Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts.

Wei Chen, Xuefei Wang, Gang Wei, Yin Huang, Yufang Shi, Dan Li, Shengnu Qiu, Bin Zhou, Junhong Cao, Meng Chen, Pengfei Qin, Wenfei Jin, Ting Ni
Author Information
  1. Wei Chen: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
  2. Xuefei Wang: Department of Biology, Southern University of Science and Technology, Shenzhen, China.
  3. Gang Wei: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
  4. Yin Huang: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
  5. Yufang Shi: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
  6. Dan Li: Field Application Department, Fluidigm (Shanghai) Instrument Technology Co., Ltd., Shanghai, China.
  7. Shengnu Qiu: Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom.
  8. Bin Zhou: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
  9. Junhong Cao: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
  10. Meng Chen: Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
  11. Pengfei Qin: Department of Biology, Southern University of Science and Technology, Shenzhen, China.
  12. Wenfei Jin: Department of Biology, Southern University of Science and Technology, Shenzhen, China.
  13. Ting Ni: State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.

Abstract

Replicative senescence is a hallmark of aging, which also contributes to individual aging. Mouse embryonic fibroblasts (MEFs) provide a convenient replicative senescence model. However, the heterogeneity of single MEFs during cellular senescence has remained unclear. Here, we conducted single-cell RNA sequencing on senescent MEFs. Principal component analysis showed obvious heterogeneity among these MEFs such that they could be divided into six subpopulations. Three types of gene expression analysis revealed distinct expression features of these six subpopulations. Trajectory analysis revealed three distinct lineages during MEF senescence. In the main lineage, some senescence-associated secretory phenotypes were upregulated in a subset of cells from senescent clusters, which could not be distinguished in a previous bulk study. In the other two lineages, a possibility of escape from cell cycle arrest and coupling between translation-related genes and ATP synthesis-related genes were also discovered. Additionally, we found co-expression of transcription factor HOXD8 coding gene and its potential target genes in the main lineage. Overexpression of led to senescence-associated phenotypes, suggesting HOXD8 is a new regulator of MEF senescence. Together, our single-cell sequencing on senescent MEFs largely expanded the knowledge of a basic cell model for aging research.

Keywords

References

  1. Science. 2018 Dec 21;362(6421):1416-1422 [PMID: 30573629]
  2. Exp Gerontol. 1996 Jul-Aug;31(4):443-8 [PMID: 9415101]
  3. Nat Rev Genet. 2013 Jul;14(7):496-506 [PMID: 23774734]
  4. J Exp Med. 1979 May 1;149(5):1029-41 [PMID: 448284]
  5. Aging Cell. 2013 Aug;12(4):622-34 [PMID: 23590226]
  6. Nature. 2016 Dec 15;540(7633):428-432 [PMID: 27919074]
  7. Genome Res. 2015 Dec;25(12):1860-72 [PMID: 26430063]
  8. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  9. Science. 2014 Jan 10;343(6167):193-6 [PMID: 24408435]
  10. Nat Cell Biol. 2013 Aug;15(8):978-90 [PMID: 23770676]
  11. Nat Commun. 2018 Jul 2;9(1):2560 [PMID: 29967491]
  12. BMC Genomics. 2018 Jun 19;19(1):477 [PMID: 29914354]
  13. Oncol Rep. 2016 Dec;36(6):3529-3535 [PMID: 27748920]
  14. Aging Cell. 2019 Jun;18(3):e12918 [PMID: 30848072]
  15. Mol Cell. 2004 May 21;14(4):501-13 [PMID: 15149599]
  16. Nat Cell Biol. 2003 Aug;5(8):741-7 [PMID: 12855956]
  17. Cell Stem Cell. 2010 May 7;6(5):468-78 [PMID: 20452321]
  18. Genes Dev. 1994 Nov 1;8(21):2540-51 [PMID: 7958916]
  19. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  20. J Cell Biol. 1963 May;17:299-313 [PMID: 13985244]
  21. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  22. Cell. 2013 Jun 6;153(6):1194-217 [PMID: 23746838]
  23. Cell Rep. 2019 Apr 23;27(4):997-1007.e5 [PMID: 31018144]
  24. Nat Genet. 1993 Nov;5(3):225-9 [PMID: 8275085]
  25. Nature. 2013 Aug 29;500(7464):593-7 [PMID: 23892778]
  26. Mol Cell. 2018 May 17;70(4):730-744.e6 [PMID: 29706538]
  27. Mech Ageing Dev. 2017 Dec;168:30-36 [PMID: 28414025]
  28. Nat Commun. 2017 Aug 30;8(1):328 [PMID: 28855503]
  29. Bioinformatics. 2013 Feb 15;29(4):461-7 [PMID: 23267174]
  30. Nature. 2010 Oct 21;467(7318):929-34 [PMID: 20962839]
  31. Cell Death Differ. 2015 Apr;22(4):574-82 [PMID: 25526087]
  32. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  33. Nat Rev Mol Cell Biol. 2007 Sep;8(9):729-40 [PMID: 17667954]
  34. Cell. 2008 Apr 18;133(2):292-302 [PMID: 18423200]
  35. Aging (Albany NY). 2012 Dec;4(12):932-51 [PMID: 23385065]
  36. Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3233-8 [PMID: 12629205]
  37. Curr Opin Cell Biol. 2010 Dec;22(6):816-27 [PMID: 20807678]
  38. Cell. 1975 Nov;6(3):331-43 [PMID: 1052771]
  39. PLoS One. 2016 Dec 1;11(12):e0167394 [PMID: 27907085]
  40. Science. 2017 Mar 31;355(6332):1433-1436 [PMID: 28360329]
  41. Genome Res. 2018 Mar 1;28(3):285-294 [PMID: 29440281]
  42. Int J Biochem Cell Biol. 2017 Jul;88:1-13 [PMID: 28457970]
  43. PLoS One. 2011;6(12):e29099 [PMID: 22206000]
  44. In Vitro. 1978 Nov;14(11):951-5 [PMID: 730203]
  45. Exp Cell Res. 1979 Oct 15;123(2):388-92 [PMID: 499364]
  46. Cell. 1997 Nov 28;91(5):649-59 [PMID: 9393858]
  47. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  48. Cell. 2018 May 17;173(5):1307 [PMID: 29775597]
  49. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9363-7 [PMID: 7568133]
  50. Cell. 1992 Jan 24;68(2):283-302 [PMID: 1346368]
  51. Clin Cancer Res. 2008 Jul 15;14(14):4408-16 [PMID: 18628455]
  52. Nat Med. 2000 Aug;6(8):849-51 [PMID: 10932210]
  53. PLoS One. 2010 Feb 12;5(2):e9188 [PMID: 20169192]
  54. Cell Biochem Funct. 2012 Jan;30(1):54-60 [PMID: 22012588]
  55. Biogerontology. 2004;5(1):1-10 [PMID: 15138376]
  56. Cell. 2000 Aug 18;102(4):407-10 [PMID: 10966103]
  57. Trends Mol Med. 2010 May;16(5):238-46 [PMID: 20444648]
  58. Cell. 2017 Jun 15;169(7):1342-1356.e16 [PMID: 28622514]
  59. Exp Cell Res. 1961 Dec;25:585-621 [PMID: 13905658]
  60. Nature. 2016 Feb 11;530(7589):184-9 [PMID: 26840489]
  61. Nat Rev Mol Cell Biol. 2014 Jul;15(7):482-96 [PMID: 24954210]