Bisphenol A and 17α-ethinylestradiol-induced transgenerational gene expression differences in the brain-pituitary-testis axis of medaka, Oryzias latipes†.

Albert J Thayil, Xuegeng Wang, Pooja Bhandari, Frederick S Vom Saal, Donald E Tillitt, Ramji K Bhandari
Author Information
  1. Albert J Thayil: Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.
  2. Xuegeng Wang: Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.
  3. Pooja Bhandari: Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.
  4. Frederick S Vom Saal: Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
  5. Donald E Tillitt: United States Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA.
  6. Ramji K Bhandari: Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.

Abstract

Endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 17α-ethinylestradiol (EE2), can have far reaching health effects, including transgenerational abnormalities in offspring that never directly contacted either chemical. We previously reported reduced fertilization rates and embryo survival at F2 and F3 generations caused by 7-day embryonic exposure (F0) to 100 μg/L BPA or 0.05 μg/L EE2 in medaka. Crossbreeding of fish in F2 generation indicated subfertility in males. To further understand the mechanisms underlying BPA or EE2-induced adult onset and transgenerational reproductive defects in males, the present study examined the expression of genes regulating the brain-pituitary-testis (BPT) axis in the same F0 and F2 generation male medaka. Embryonic exposure to BPA or EE2 led to hyperactivation of brain and pituitary genes, which are actively involved in reproduction in adulthood of the F0 generation male fish, and some of these F0 effects continued to the F2 generation (transgenerational effects). Particularly, the F2 generation inherited the hyperactivated state of expression for kisspeptin (kiss1 and kiss2) and their receptors (kiss1r and kiss2r), and gnrh and gnrh receptors. At F2 generation, expression of DNA methyltransferase 1 (dnmt1) decreased in brain of the BPA treatment lineage, while EE2 treatment lineage showed increased dnmt3bb expression. Global hypomethylation pattern was observed in the testis of both F0 and F2 generation fish. Taken together, these results demonstrated that BPA or EE2-induced transgenerational reproductive impairment in the F2 generation was associated with alterations of reproductive gene expression in brain and testis and global DNA methylation in testis.

Keywords

References

  1. Endocrinology. 2015 Mar;156(3):769-71 [PMID: 25679870]
  2. Biomolecules. 2019 Jul 25;9(8): [PMID: 31349731]
  3. Int J Androl. 2010 Apr;33(2):360-8 [PMID: 19906185]
  4. Nat Commun. 2013;4:2492 [PMID: 24051579]
  5. Annu Rev Physiol. 2008;70:213-38 [PMID: 17988212]
  6. Endocrinology. 2012 Aug;153(8):3828-38 [PMID: 22707478]
  7. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8897-901 [PMID: 17517636]
  8. Epigenetics. 2019 Jun;14(6):611-622 [PMID: 31010368]
  9. Toxicology. 2015 Mar 2;329:1-9 [PMID: 25575453]
  10. Endocrinology. 2016 Feb;157(2):636-47 [PMID: 26653335]
  11. Horm Behav. 2019 May;111:7-22 [PMID: 30476496]
  12. N Engl J Med. 2003 Oct 23;349(17):1614-27 [PMID: 14573733]
  13. Environ Sci Technol. 2004 Jul 1;38(13):3649-58 [PMID: 15296317]
  14. Reprod Toxicol. 2008 Jan;25(1):2-6 [PMID: 17949945]
  15. Biochem Biophys Res Commun. 2003 Dec 12;312(2):441-8 [PMID: 14637157]
  16. Chemosphere. 1998 Apr;36(10):2149-73 [PMID: 9566294]
  17. Sci Total Environ. 2008 Sep 1;402(2-3):192-200 [PMID: 18556047]
  18. J Reprod Dev. 2016 Dec 20;62(6):537-545 [PMID: 27478063]
  19. Aquat Toxicol. 2019 Jun;211:227-234 [PMID: 31048106]
  20. PLoS One. 2013 Apr 25;8(4):e62776 [PMID: 23638144]
  21. Environ Pollut. 2019 Aug;251:639-650 [PMID: 31108297]
  22. Endocr Rev. 2009 Feb;30(1):75-95 [PMID: 19074586]
  23. Reprod Sci. 2016 Nov;23(11):1493-1508 [PMID: 27189070]
  24. Front Endocrinol (Lausanne). 2013 Mar 08;4:24 [PMID: 23482509]
  25. PLoS Genet. 2007 Jan 12;3(1):e5 [PMID: 17222059]
  26. Endocrinology. 2009 Feb;150(2):821-31 [PMID: 18927220]
  27. Epigenetics Chromatin. 2018 Jun 29;11(1):37 [PMID: 29958539]
  28. Annu Rev Physiol. 2011;73:135-62 [PMID: 21054169]
  29. J Exp Biol. 2016 Nov 1;219(Pt 21):3353-3365 [PMID: 27591305]
  30. Environ Epigenet. 2016;2(1): [PMID: 27390622]
  31. J Steroid Biochem Mol Biol. 2011 Nov;127(3-5):204-15 [PMID: 21899826]
  32. Reprod Toxicol. 2007 Aug-Sep;24(2):139-77 [PMID: 17825522]
  33. Fish Physiol Biochem. 2019 Feb;45(1):33-42 [PMID: 29971526]
  34. Epigenetics Chromatin. 2017 Dec 8;10(1):59 [PMID: 29216900]
  35. Reprod Toxicol. 2007 Aug-Sep;24(2):131-8 [PMID: 17768031]
  36. Endocrinology. 2006 Mar;147(3):1154-8 [PMID: 16373418]
  37. Horm Behav. 2009 May;55(5):597-604 [PMID: 19446076]
  38. Mol Biol Rep. 2016 Jul;43(7):737-49 [PMID: 27216535]
  39. Semin Cell Dev Biol. 1998 Aug;9(4):411-6 [PMID: 9813187]
  40. Environ Mol Mutagen. 2006 Oct;47(8):571-8 [PMID: 16795089]
  41. Horm Metab Res. 2012 Jul;44(8):577-86 [PMID: 22700441]
  42. J Exp Zool A Ecol Genet Physiol. 2010 Aug 1;313(7):381-98 [PMID: 20623803]
  43. Epigenetics. 2016 Jul 2;11(7):526-38 [PMID: 27120497]
  44. Endocr J. 2004 Dec;51(6):595-600 [PMID: 15644579]
  45. Sci Rep. 2015 Mar 20;5:9303 [PMID: 25790734]
  46. Biochem Biophys Res Commun. 2002 Feb 15;291(1):76-8 [PMID: 11829464]
  47. Endocrinology. 2014 Feb;155(2):536-47 [PMID: 24248459]
  48. Biol Reprod. 2018 Jul 1;99(1):87-100 [PMID: 29462262]
  49. Gen Comp Endocrinol. 2015 Nov 1;223:66-72 [PMID: 26431611]
  50. Mech Dev. 2004 Jul;121(7-8):605-18 [PMID: 15210170]
  51. Environ Epigenet. 2016 Jan 30;2(1):dvv010 [PMID: 29492282]
  52. Environ Sci Technol. 2002 Mar 15;36(6):1202-11 [PMID: 11944670]
  53. J Hazard Mater. 2020 Mar 15;386:121886 [PMID: 31887561]
  54. Toxicol Appl Pharmacol. 2015 May 1;284(3):354-62 [PMID: 25771130]
  55. Environ Health Perspect. 2005 Apr;113(4):391-5 [PMID: 15811827]
  56. Environ Pollut. 2009 Feb;157(2):561-8 [PMID: 18952330]
  57. Endocrinology. 2015 Feb;156(2):589-99 [PMID: 25406015]
  58. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  59. Endocrinology. 2010 Apr;151(4):1751-9 [PMID: 20207833]
  60. Water Res. 2010 Jul;44(14):4115-26 [PMID: 20554303]
  61. Environ Health. 2016 Apr 12;15:50 [PMID: 27071747]
  62. Biol Reprod. 2011 Jan;84(1):7-17 [PMID: 20739665]
  63. Environ Health Perspect. 2007 Jan;115(1):116-21 [PMID: 17366830]
  64. Environ Res. 2016 Oct;150:375-382 [PMID: 27362993]
  65. Zoolog Sci. 2005 Apr;22(4):379-89 [PMID: 15846047]
  66. Endocrinology. 2008 May;149(5):2467-76 [PMID: 18202129]
  67. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10972-6 [PMID: 12944565]
  68. Aquat Toxicol. 2019 May;210:215-226 [PMID: 30875550]
  69. Andrology. 2016 Mar;4(2):189-212 [PMID: 26846984]
  70. Reproduction. 2006 Oct;132(4):539-47 [PMID: 17008465]
  71. Gen Comp Endocrinol. 2015 Apr 1;214:195-219 [PMID: 25277515]
  72. Aquat Toxicol. 2008 Jul 7;88(3):173-82 [PMID: 18534694]
  73. Front Endocrinol (Lausanne). 2017 Oct 24;8:274 [PMID: 29123501]
  74. Nature. 2015 Jan 15;517(7534):321-6 [PMID: 25592537]
  75. Nat Neurosci. 2004 Oct;7(10):1034-9 [PMID: 15452574]

Grants

  1. R21 ES027123/NIEHS NIH HHS
  2. R21 HD098621/NICHD NIH HHS

MeSH Term

Animals
Benzhydryl Compounds
Brain
Endocrine Disruptors
Ethinyl Estradiol
Gene Expression Regulation
Male
Oryzias
Phenols
Pituitary Gland
Testis
Water Pollutants, Chemical

Chemicals

Benzhydryl Compounds
Endocrine Disruptors
Phenols
Water Pollutants, Chemical
Ethinyl Estradiol
bisphenol A

Word Cloud

Created with Highcharts 10.0.0F2generationexpressionBPAtransgenerationalF0EE2fisheffectsmedakareproductivebrainDNAtestisgenehealthfertilizationexposuremalesEE2-inducedgenesbrain-pituitary-testisaxismalereproductionreceptorsgnrhtreatmentlineagemethylationEndocrinedisruptingchemicalsEDCsbisphenol17α-ethinylestradiolcanfarreachingincludingabnormalitiesoffspringneverdirectlycontactedeitherchemicalpreviouslyreportedreducedratesembryosurvivalF3generationscaused7-dayembryonic100 μg/L005 μg/LCrossbreedingindicatedsubfertilityunderstandmechanismsunderlyingadultonsetdefectspresentstudyexaminedregulatingBPTEmbryonicledhyperactivationpituitaryactivelyinvolvedadulthoodcontinuedParticularlyinheritedhyperactivatedstatekisspeptinkiss1kiss2kiss1rkiss2rmethyltransferase1dnmt1decreasedshowedincreaseddnmt3bbGlobalhypomethylationpatternobservedTakentogetherresultsdemonstratedimpairmentassociatedalterationsglobalBisphenol17α-ethinylestradiol-induceddifferencesOryziaslatipes†developmentaloriginsdiseaseendocrinedisruptorsepigenetics

Similar Articles

Cited By