ELICITS ACUTE STRESS RESPONSE IN SPOTTED SALAMANDERS BUT NOT INFECTION OR MORTALITY.

Kelly L Barnhart, Molly C Bletz, Brandon C LaBumbard, Amanda G Tokash-Peters, Caitlin R Gabor, Douglas C Woodhams
Author Information
  1. Kelly L Barnhart: University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125.
  2. Molly C Bletz: University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125.
  3. Brandon C LaBumbard: University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125. ORCID
  4. Amanda G Tokash-Peters: University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125.
  5. Caitlin R Gabor: Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666.
  6. Douglas C Woodhams: University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125. ORCID

Abstract

The emerging fungal pathogen () is a major threat to amphibian species worldwide with potential to infect many species if it invades salamander biodiversity hotspots in the Americas. can cause the disease chytridiomycosis, and it is important to assess the risk of -induced chytridiomycosis to species in North America. We evaluated the susceptibility to of the common and widespread spotted salamander, , across life history stages and monitored the effect of exposure on growth rate and response of the stress hormone, corticosterone. We conclude that spotted salamanders appear resistant to because they showed no indication of disease or infection, and experienced minor effects on growth upon exposure. While we focused on a single population for this study, results were consistent across conditions of exposure including high or repeated doses of , life-stage at exposure, environmental conditions including two temperatures and two substrates, and promoting pathogen infectivity by conditioning cultures with thyroid hormone. Exposure to high levels of elicited an acute but not chronic increase in corticosterone in spotted salamanders, and reduced growth. We hypothesize that the early acute increase in corticosterone facilitated mounting an immune response to the pathogen, perhaps through immunoredistribution to the skin, but further study is needed to determine immune responses to . These results will contribute to development of appropriate management plans to conserve species at risk of emerging disease.

Keywords

References

  1. Endocr Rev. 2000 Feb;21(1):55-89 [PMID: 10696570]
  2. PLoS One. 2013 May 20;8(5):e63639 [PMID: 23703511]
  3. Dis Aquat Organ. 2007 Jan 18;73(3):175-92 [PMID: 17330737]
  4. Dis Aquat Organ. 2007 May 9;75(3):201-7 [PMID: 17629114]
  5. Integr Comp Biol. 2011 Oct;51(4):552-62 [PMID: 21816807]
  6. Science. 2014 Oct 31;346(6209):630-1 [PMID: 25359973]
  7. Emerg Infect Dis. 2016 Jul;22(7):1286-8 [PMID: 27070102]
  8. Gen Comp Endocrinol. 1985 May;58(2):270-9 [PMID: 3873380]
  9. Fungal Biol. 2013 Jun;117(6):451-61 [PMID: 23809655]
  10. Physiol Biochem Zool. 2007 Jul-Aug;80(4):444-51 [PMID: 17508339]
  11. PLoS Pathog. 2015 Dec 10;11(12):e1005251 [PMID: 26662103]
  12. Ann N Y Acad Sci. 1995 Dec 29;771:419-37 [PMID: 8597419]
  13. Horm Behav. 1988 Sep;22(3):338-50 [PMID: 3139541]
  14. Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15325-9 [PMID: 24003137]
  15. J Clin Microbiol. 2013 Dec;51(12):4173-7 [PMID: 24108616]
  16. Horm Behav. 2003 Jan;43(1):2-15 [PMID: 12614627]
  17. Dev Comp Immunol. 2002 Jan;26(1):63-72 [PMID: 11687264]
  18. ISME J. 2009 Jul;3(7):818-24 [PMID: 19322245]
  19. R Soc Open Sci. 2016 Feb 17;3(2):150616 [PMID: 26998331]
  20. Ecohealth. 2016 Jun;13(2):350-9 [PMID: 27283058]
  21. Infect Immun. 2015 Dec;83(12):4565-70 [PMID: 26371122]
  22. Science. 2019 Mar 29;363(6434):1459-1463 [PMID: 30923224]
  23. Front Microbiol. 2017 Aug 21;8:1551 [PMID: 28871241]
  24. Ecol Evol. 2015 Sep 02;5(18):4079-97 [PMID: 26445660]
  25. PLoS One. 2013 Apr 22;8(4):e62146 [PMID: 23630628]
  26. Ecohealth. 2009 Dec;6(4):565-75 [PMID: 20135192]
  27. Integr Zool. 2010 Jun;5(2):143-153 [PMID: 21392332]
  28. Dis Aquat Organ. 2003 Jun 20;55(1):65-7 [PMID: 12887256]
  29. Naturwissenschaften. 2018 Sep 4;105(9-10):56 [PMID: 30291447]
  30. Nature. 2017 Apr 19;544(7650):353-356 [PMID: 28425998]
  31. Ann N Y Acad Sci. 2009 Apr;1163:1-16 [PMID: 19456324]
  32. PLoS One. 2013;8(1):e54490 [PMID: 23382904]
  33. Neuroimmunomodulation. 2009;16(5):300-17 [PMID: 19571591]
  34. Proc Biol Sci. 2016 Sep 28;283(1839): [PMID: 27655769]
  35. Oecologia. 2018 Feb;186(2):393-404 [PMID: 29222721]
  36. Ecol Lett. 2013 Jun;16(6):807-20 [PMID: 23452227]
  37. Int J Antimicrob Agents. 2014 Nov;44(5):377-86 [PMID: 25130096]
  38. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11466-73 [PMID: 18695221]
  39. Dis Aquat Organ. 2017 Mar 21;123(3):213-226 [PMID: 28322208]
  40. PLoS One. 2013;8(2):e56054 [PMID: 23418508]
  41. J Wildl Dis. 2008 Apr;44(2):226-36 [PMID: 18436656]
  42. Dis Aquat Organ. 2015 Oct 27;116(3):205-12 [PMID: 26503775]
  43. PLoS One. 2015 Apr 20;10(4):e0122685 [PMID: 25893675]
  44. Comp Biochem Physiol. 1970 Jun 1;34(3):683-9 [PMID: 5455648]
  45. Oecologia. 2015 Mar;177(3):901-910 [PMID: 25416999]
  46. Z Naturforsch C J Biosci. 2005 Nov-Dec;60(11-12):932-7 [PMID: 16402556]
  47. Science. 2000 Jan 21;287(5452):443-9 [PMID: 10642539]
  48. Sci Adv. 2015 Jun 19;1(5):e1400253 [PMID: 26601195]
  49. Front Microbiol. 2017 Sep 13;8:1751 [PMID: 28959244]
  50. Immunol Res. 2001;23(2-3):273-80 [PMID: 11444392]
  51. Vet Res. 2015 Nov 25;46:137 [PMID: 26607488]
  52. Dis Aquat Organ. 2015 Jan 15;112(3):237-42 [PMID: 25590774]
  53. Int Rev Cytol. 1993;145:105-48 [PMID: 8500980]
  54. J Anim Ecol. 2018 Jan;87(1):235-246 [PMID: 29095486]
  55. Integr Org Biol. 2019 Jul 13;1(1):obz017 [PMID: 33791532]
  56. Science. 2015 Jul 31;349(6247):481-2 [PMID: 26228132]
  57. PLoS One. 2010 Jun 04;5(6):e10957 [PMID: 20532032]
  58. J Gen Virol. 2015 May;96(Pt 5):1138-1149 [PMID: 25593158]
  59. Dis Aquat Organ. 2012 Feb 17;98(1):11-25 [PMID: 22422126]
  60. PLoS One. 2012;7(3):e33567 [PMID: 22428071]
  61. Mol Phylogenet Evol. 2014 Apr;73:208-16 [PMID: 24412216]
  62. Science. 2018 May 11;360(6389):621-627 [PMID: 29748278]
  63. Toxicon. 1987;25(10):1023-95 [PMID: 3321567]
  64. PLoS One. 2018 Jul 18;13(7):e0199295 [PMID: 30020936]
  65. Immunol Rev. 1998 Dec;166:221-30 [PMID: 9914915]
  66. PLoS One. 2014 Apr 30;9(4):e96375 [PMID: 24789229]
  67. Transplantation. 1992 Feb;53(2):473-6 [PMID: 1738942]
  68. Toxicon. 1975 Aug;13(4):285-9 [PMID: 809864]
  69. Gen Comp Endocrinol. 1997 Jan;105(1):102-13 [PMID: 9000472]
  70. Conserv Biol. 2017 Jun;31(3):592-600 [PMID: 27594575]
  71. Infect Immun. 2010 Sep;78(9):3981-92 [PMID: 20584973]
  72. Biochim Biophys Acta. 2009 Aug;1788(8):1593-9 [PMID: 19327341]
  73. Integr Comp Biol. 2002 Jul;42(3):556-64 [PMID: 21708751]
  74. Mol Ecol. 2018 Apr;27(8):1992-2006 [PMID: 29411448]
  75. Proc Biol Sci. 2015 Feb 22;282(1801):20142039 [PMID: 25567647]

Grants

  1. R25 GM076321/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0speciesdiseaseexposurecorticosteronepathogenchytridiomycosisspottedgrowthemergingsalamanderrisksusceptibilityacrossresponsehormonesalamandersstudyresultsconditionsincludinghightwothyroidacuteincreaseimmunefungalmajorthreatamphibianworldwidepotentialinfectmanyinvadesbiodiversityhotspotsAmericascancauseimportantassess-inducedNorthAmericaevaluatedcommonwidespreadlifehistorystagesmonitoredeffectratestressconcludeappearresistantshowedindicationinfectionexperiencedminoreffectsuponfocusedsinglepopulationconsistentrepeateddoseslife-stageenvironmentaltemperaturessubstratespromotinginfectivityconditioningculturesExposurelevelselicitedchronicreducedhypothesizeearlyfacilitatedmountingperhapsimmunoredistributionskinneededdetermineresponseswillcontributedevelopmentappropriatemanagementplansconserveELICITSACUTESTRESSRESPONSEINSPOTTEDSALAMANDERSBUTNOTINFECTIONORMORTALITYAmbystomamaculatumNotophthalmusviridescensSalamandrasalamandraresistance

Similar Articles

Cited By