Aging Atlas: a multi-omics database for aging biology.

Aging Atlas Consortium
Author Information

Abstract

Organismal aging is driven by interconnected molecular changes encompassing internal and extracellular factors. Combinational analysis of high-throughput 'multi-omics' datasets (gathering information from genomics, epigenomics, transcriptomics, proteomics, metabolomics and pharmacogenomics), at either populational or single-cell levels, can provide a multi-dimensional, integrated profile of the heterogeneous aging process with unprecedented throughput and detail. These new strategies allow for the exploration of the molecular profile and regulatory status of gene expression during aging, and in turn, facilitate the development of new aging interventions. With a continually growing volume of valuable aging-related data, it is necessary to establish an open and integrated database to support a wide spectrum of aging research. The Aging Atlas database aims to provide a wide range of life science researchers with valuable resources that allow access to a large-scale of gene expression and regulation datasets created by various high-throughput omics technologies. The current implementation includes five modules: transcriptomics (RNA-seq), single-cell transcriptomics (scRNA-seq), epigenomics (ChIP-seq), proteomics (protein-protein interaction), and pharmacogenomics (geroprotective compounds). Aging Atlas provides user-friendly functionalities to explore age-related changes in gene expression, as well as raw data download services. Aging Atlas is freely available at https://bigd.big.ac.cn/aging/index.

References

  1. Protein Cell. 2020 Oct;11(10):740-770 [PMID: 32780218]
  2. Cell Rep. 2020 Jul 7;32(1):107870 [PMID: 32640235]
  3. Nature. 2020 Jul;583(7817):596-602 [PMID: 32669715]
  4. Bioinformatics. 2009 Jan 15;25(2):288-9 [PMID: 19033274]
  5. Nat Commun. 2020 May 5;11(1):2202 [PMID: 32371953]
  6. Cell Res. 2021 Feb;31(2):187-205 [PMID: 32737416]
  7. Protein Cell. 2019 May;10(5):370-375 [PMID: 30421359]
  8. Curr Opin Syst Biol. 2019 Jun;15:19-29 [PMID: 32789283]
  9. Cell. 2020 Feb 6;180(3):585-600.e19 [PMID: 32004457]
  10. Nucleic Acids Res. 2015 Jan;43(Database issue):D873-8 [PMID: 25232097]
  11. Nucleic Acids Res. 2018 Jan 4;46(D1):D1083-D1090 [PMID: 29121237]
  12. Protein Cell. 2021 Nov;12(11):889-898 [PMID: 33051815]
  13. Cell Metab. 2019 Apr 2;29(4):871-885.e5 [PMID: 30853213]
  14. Cell Stem Cell. 2019 Mar 7;24(3):447-461.e8 [PMID: 30661960]
  15. Nucleic Acids Res. 2020 Jan 8;48(D1):D24-D33 [PMID: 31702008]
  16. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  17. Protein Cell. 2016 Jul;7(7):478-88 [PMID: 27271327]
  18. Cell. 2013 Jun 6;153(6):1194-217 [PMID: 23746838]
  19. PLoS Genet. 2007 Nov;3(11):e201 [PMID: 18081424]
  20. Nat Commun. 2019 Apr 4;10(1):1535 [PMID: 30948729]
  21. Protein Cell. 2020 Nov;11(11):809-824 [PMID: 32729022]
  22. Nucleic Acids Res. 2019 Jul 2;47(W1):W158-W165 [PMID: 31165883]
  23. Nat Rev Mol Cell Biol. 2020 Mar;21(3):137-150 [PMID: 32020082]
  24. Mutat Res. 2016 Jun;788:2-6 [PMID: 26923716]
  25. Cancer Sci. 2017 Apr;108(4):563-569 [PMID: 28165648]
  26. Nature. 2020 Jul;583(7817):590-595 [PMID: 32669714]
  27. Ageing Res Rev. 2019 Jan;49:49-66 [PMID: 30472217]
  28. Biogerontology. 2017 Apr;18(2):171-188 [PMID: 28265788]
  29. Nucleic Acids Res. 2014 Jan;42(Database issue):D892-6 [PMID: 24217911]
  30. Protein Cell. 2019 Oct;10(10):770-775 [PMID: 31325157]
  31. Nat Metab. 2020 Apr;2(4):293-302 [PMID: 32694606]
  32. Nature. 2019 Jul;571(7764):183-192 [PMID: 31292558]
  33. Cell. 2020 Mar 5;180(5):984-1001.e22 [PMID: 32109414]
  34. Cell Res. 2021 Apr;31(4):415-432 [PMID: 32913304]
  35. Natl Sci Rev. 2020 Jun 10;8(2):nwaa127 [PMID: 34691567]
  36. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7611-7616 [PMID: 29967166]

MeSH Term

Aging
Databases, Genetic
Epigenomics
Genomics
Humans
Pharmacogenetics
Transcriptome

Links to CNCB-NGDC Resources

Database Commons: DBC007154 (Aging Atlas)

Word Cloud

Similar Articles

Cited By