Complex Contagion Features without Social Reinforcement in a Model of Social Information Flow.

Tyson Pond, Saranzaya Magsarjav, Tobin South, Lewis Mitchell, James P Bagrow
Author Information
  1. Tyson Pond: Department of Mathematics & Statistics, University of Vermont, Burlington, VT 05405, USA.
  2. Saranzaya Magsarjav: School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
  3. Tobin South: School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia. ORCID
  4. Lewis Mitchell: School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia. ORCID
  5. James P Bagrow: Department of Mathematics & Statistics, University of Vermont, Burlington, VT 05405, USA. ORCID

Abstract

Contagion models are a primary lens through which we understand the spread of information over social networks. However, simple contagion models cannot reproduce the complex features observed in real-world data, leading to research on more complicated complex contagion models. A noted feature of complex contagion is social reinforcement that individuals require multiple exposures to information before they begin to spread it themselves. Here we show that the quoter model, a model of the social flow of written information over a network, displays features of complex contagion, including the weakness of long ties and that increased density inhibits rather than promotes information flow. Interestingly, the quoter model exhibits these features despite having no explicit social reinforcement mechanism, unlike complex contagion models. Our results highlight the need to complement contagion models with an information-theoretic view of information spreading to better understand how network properties affect information flow and what are the most necessary ingredients when modeling social behavior.

Keywords

References

  1. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):020901 [PMID: 19792067]
  2. Sci Adv. 2016 Apr 01;2(4):e1501158 [PMID: 27051875]
  3. Phys Rev Lett. 2000 Jul 10;85(2):461-4 [PMID: 10991308]
  4. Phys Rev Lett. 2014 Aug 22;113(8):088701 [PMID: 25192129]
  5. Chaos. 2018 Jul;28(7):075304 [PMID: 30070496]
  6. Science. 2010 Feb 19;327(5968):1018-21 [PMID: 20167789]
  7. Science. 2015 Jan 30;347(6221):536-9 [PMID: 25635097]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107 [PMID: 21405744]
  9. Nat Hum Behav. 2019 Feb;3(2):122-128 [PMID: 30944448]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):065103 [PMID: 14754250]
  11. Sci Adv. 2017 Aug 04;3(8):e1701172 [PMID: 28798961]
  12. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  13. Science. 2010 Sep 3;329(5996):1194-7 [PMID: 20813952]
  14. Sci Rep. 2013;3:2330 [PMID: 23900230]
  15. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5766-71 [PMID: 16578874]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113 [PMID: 14995526]
  17. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):5962-6 [PMID: 22474360]
  18. Multiscale Model Simul. 2017;15(1):537-574 [PMID: 29046619]
  19. Science. 2009 Feb 6;323(5915):721-3 [PMID: 19197046]
  20. PLoS One. 2013 May 29;8(5):e64679 [PMID: 23734215]

Grants

  1. IIS-1447634/National Science Foundation

Word Cloud

Created with Highcharts 10.0.0informationsocialcontagionmodelscomplexfeaturesmodelflowContagionunderstandspreadnetworksreinforcementquoternetworkspreadingSocialprimarylensHoweversimplereproduceobservedreal-worlddataleadingresearchcomplicatednotedfeatureindividualsrequiremultipleexposuresbeginshowwrittendisplaysincludingweaknesslongtiesincreaseddensityinhibitsratherpromotesInterestinglyexhibitsdespiteexplicitmechanismunlikeresultshighlightneedcomplementinformation-theoreticviewbetterpropertiesaffectnecessaryingredientsmodelingbehaviorComplexFeatureswithoutReinforcementModelInformationFlowcross-entropydiffusiononlinemedia

Similar Articles

Cited By