Overlaid positive and negative feedback loops shape dynamical properties of PhoPQ two-component system.

Satyajit D Rao, Oleg A Igoshin
Author Information
  1. Satyajit D Rao: Department of Bioengineering, Rice University, Houston, Texas, USA. ORCID
  2. Oleg A Igoshin: Department of Bioengineering, Rice University, Houston, Texas, USA. ORCID

Abstract

Bacteria use two-component systems (TCSs) to sense environmental conditions and change gene expression in response to those conditions. To amplify cellular responses, many bacterial TCSs are under positive feedback control, i.e. increase their expression when activated. Escherichia coli Mg2++ -sensing TCS, PhoPQ, in addition to the positive feedback, includes a negative feedback loop via the upregulation of the MgrB protein that inhibits PhoQ. How the interplay of these feedback loops shapes steady-state and dynamical responses of PhoPQ TCS to change in Mg2++ remains poorly understood. In particular, how the presence of MgrB feedback affects the robustness of PhoPQ response to overexpression of TCS is unclear. It is also unclear why the steady-state response to decreasing Mg2++ is biphasic, i.e. plateaus over a range of Mg2++ concentrations, and then increases again at growth-limiting Mg2++. In this study, we use mathematical modeling to identify potential mechanisms behind these experimentally observed dynamical properties. The results make experimentally testable predictions for the regime with response robustness and propose a novel explanation of biphasic response constraining the mechanisms for modulation of PhoQ activity by Mg2++ and MgrB. Finally, we show how the interplay of positive and negative feedback loops affects the network's steady-state sensitivity and response dynamics. In the absence of MgrB feedback, the model predicts oscillations thereby suggesting a general mechanism of oscillatory or pulsatile dynamics in autoregulated TCSs. These results improve the understanding of TCS signaling and other networks with overlaid positive and negative feedback.

References

  1. Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16305-10 [PMID: 17909183]
  2. Cell Microbiol. 2008 Mar;10(3):576-82 [PMID: 18182085]
  3. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  4. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6 [PMID: 12522261]
  5. Mol Syst Biol. 2017 Apr 3;13(4):923 [PMID: 28373240]
  6. Curr Opin Microbiol. 2010 Apr;13(2):219-25 [PMID: 20133179]
  7. Cell Rep. 2018 Sep 11;24(11):3061-3071.e6 [PMID: 30208328]
  8. PLoS Comput Biol. 2011 Nov;7(11):e1002265 [PMID: 22125482]
  9. Nat Commun. 2018 Apr 12;9(1):1433 [PMID: 29650958]
  10. Nat Commun. 2017 Dec 13;8(1):2104 [PMID: 29235472]
  11. Mol Cell. 2012 Feb 10;45(3):409-21 [PMID: 22325356]
  12. Trends Biochem Sci. 2001 Jun;26(6):369-76 [PMID: 11406410]
  13. Infect Immun. 2000 Jun;68(6):3419-25 [PMID: 10816493]
  14. Antimicrob Agents Chemother. 2014 Oct;58(10):5696-703 [PMID: 25022583]
  15. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  16. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5 [PMID: 18077424]
  17. PLoS Genet. 2013;9(8):e1003706 [PMID: 23990799]
  18. Science. 2006 Dec 8;314(5805):1607-9 [PMID: 17158330]
  19. J Antimicrob Chemother. 2015 Jan;70(1):75-80 [PMID: 25190723]
  20. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17457-62 [PMID: 18987315]
  21. Annu Rev Microbiol. 2016 Sep 8;70:103-24 [PMID: 27607549]
  22. J Mol Biol. 2016 Sep 25;428(19):3752-75 [PMID: 27519796]
  23. J Biol Chem. 2000 Jul 28;275(30):22948-54 [PMID: 10807931]
  24. PLoS Comput Biol. 2010 Feb 12;6(2):e1000676 [PMID: 20168997]
  25. J Bacteriol. 2001 Mar;183(6):1835-42 [PMID: 11222580]
  26. Cell. 2014 Apr 24;157(3):624-35 [PMID: 24766808]
  27. ACS Synth Biol. 2014 Nov 21;3(11):820-31 [PMID: 25250630]
  28. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798 [PMID: 29183977]
  29. Annu Rev Biochem. 2000;69:183-215 [PMID: 10966457]
  30. PLoS Genet. 2009 Mar;5(3):e1000428 [PMID: 19300486]
  31. Science. 2010 Mar 12;327(5971):1389-91 [PMID: 20223989]
  32. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054-8 [PMID: 2544889]

MeSH Term

Computational Biology
Escherichia coli
Escherichia coli Proteins
Feedback, Physiological
Gene Expression Regulation, Bacterial
Magnesium
Membrane Proteins
Models, Biological
Signal Transduction

Chemicals

Escherichia coli Proteins
Membrane Proteins
MgrB protein, E coli
PhoP protein, E coli
PhoQ protein, E coli
Magnesium

Word Cloud

Created with Highcharts 10.0.0feedbackresponseMg2+positiveTCSPhoPQnegativeMgrBTCSsloopssteady-statedynamicalusetwo-componentconditionschangeexpressionresponsesiePhoQinterplayaffectsrobustnessunclearbiphasicmechanismsexperimentallypropertiesresultsdynamicsBacteriasystemssenseenvironmentalgeneamplifycellularmanybacterialcontrolincreaseactivatedEscherichiacoli-sensingadditionincludesloopviaupregulationproteininhibitsshapesremainspoorlyunderstoodparticularpresenceoverexpressionalsodecreasingplateausrangeconcentrationsincreasesgrowth-limitingstudymathematicalmodelingidentifypotentialbehindobservedmaketestablepredictionsregimeproposenovelexplanationconstrainingmodulationactivityFinallyshownetwork'ssensitivityabsencemodelpredictsoscillationstherebysuggestinggeneralmechanismoscillatorypulsatileautoregulatedimproveunderstandingsignalingnetworksoverlaidOverlaidshapesystem

Similar Articles

Cited By (6)