Increased Synaptic Strength and mGlu Receptor Plasticity on Mouse Prefrontal Cortex Intratelencephalic Pyramidal Cells Following Intermittent Access to Ethanol.

Max E Joffe, Danny G Winder, P Jeffrey Conn
Author Information
  1. Max E Joffe: Department of Pharmacology, Vanderbilt University, Nashville, TN, USA. ORCID
  2. Danny G Winder: Department of Pharmacology, Vanderbilt University, Nashville, TN, USA. ORCID
  3. P Jeffrey Conn: Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.

Abstract

BACKGROUND: The medial prefrontal cortex (PFC) is crucial for regulating craving and alcohol seeking in alcohol use disorder (AUD) patients and alcohol seeking in animal models. Maladaptive changes in volitional ethanol (EtOH) intake have been associated with PFC function, yet synaptic adaptations within PFC have not been consistently detected in voluntary drinking rodent models. At least 80% of the neurons in PFC are glutamatergic pyramidal cells. Pyramidal cells provide the predominant cortical output to several brain regions relevant to AUD, including structures within the telencephalon (IT: e.g., basal ganglia, amygdala, other neocortical regions) and outside the telencephalon (ET: e.g., lateral hypothalamus, midbrain monoaminergic structures, thalamus).
METHODS: In addition to their anatomical distinctions, studies from several laboratories have revealed that prefrontal cortical IT and ET pyramidal cells may be differentiated by specific electrophysiological parameters. These distinguishable parameters make it possible to readily classify pyramidal cells into separable subtypes. Here, we employed and validated the hyperpolarization sag ratio as a diagnostic proxy for separating ET (type A) and IT (type B) neurons. We recorded from deep-layer prelimbic PFC pyramidal cells of mice 1 day after 4 to 5 weeks of intermittent access (IA) EtOH exposure.
RESULTS: Membrane properties were not altered by IA EtOH, but excitatory postsynaptic strength onto IT type B neurons was selectively enhanced in slices from IA EtOH mice. The increased excitatory drive was accompanied by enhanced mGlu receptor plasticity on IT type B neurons, providing a potential translational approach to mitigate cognitive and motivational changes to PFC function related to binge drinking.
CONCLUSIONS: Together, these studies provide insight into the specific PFC neurocircuits altered by voluntary drinking. In addition, the findings provide an additional rationale for developing compounds that potentiate mGlu and/or mGlu receptor function as potential treatments for AUD.

Keywords

References

  1. Front Neural Circuits. 2012 Mar 20;6:12 [PMID: 22454619]
  2. J Neurosci. 2017 Jun 14;37(24):5846-5860 [PMID: 28522735]
  3. ACS Chem Neurosci. 2018 Sep 19;9(9):2188-2204 [PMID: 29792024]
  4. Mol Psychiatry. 2019 Jun;24(6):916-927 [PMID: 29269844]
  5. Neuropsychopharmacology. 2018 Jun;43(7):1518-1529 [PMID: 29520058]
  6. J Neurosci. 2018 Jul 4;38(27):6207-6222 [PMID: 29915134]
  7. Neuron. 2020 Jan 8;105(1):46-59.e3 [PMID: 31735403]
  8. Nat Neurosci. 2016 Feb;19(2):335-46 [PMID: 26727548]
  9. Addict Biol. 2016 May;21(3):613-33 [PMID: 25916683]
  10. Cell Rep. 2018 Jan 16;22(3):679-692 [PMID: 29346766]
  11. J Neurosci. 2005 Jul 27;25(30):7054-61 [PMID: 16049182]
  12. Addict Biol. 2017 Mar;22(2):423-434 [PMID: 26687341]
  13. J Neurophysiol. 2014 Sep 1;112(5):1169-78 [PMID: 24872538]
  14. J Neurosci. 2010 Dec 15;30(50):16922-37 [PMID: 21159963]
  15. Int Rev Neurobiol. 2010;91:289-320 [PMID: 20813246]
  16. Nat Neurosci. 2013 Aug;16(8):1094-100 [PMID: 23817545]
  17. Neuron. 2018 Apr 18;98(2):366-379.e4 [PMID: 29628187]
  18. Neuropharmacology. 2015 Dec;99:735-49 [PMID: 26188147]
  19. Neuropharmacology. 2020 Nov 1;178:108126 [PMID: 32781000]
  20. Cereb Cortex. 2019 Jul 5;29(7):3224-3242 [PMID: 30566584]
  21. Alcohol Clin Exp Res. 2019 May;43(5):822-832 [PMID: 30860602]
  22. Psychopharmacology (Berl). 1993;112(4):503-10 [PMID: 7871064]
  23. Science. 2019 Nov 22;366(6468):1008-1012 [PMID: 31754002]
  24. J Neurosci. 2012 Aug 1;32(31):10516-21 [PMID: 22855801]
  25. Neuropharmacology. 2018 May 1;133:470-480 [PMID: 29471053]
  26. Neuron. 2014 Jan 8;81(1):61-8 [PMID: 24361076]
  27. Q J Stud Alcohol. 1962 Mar;23:26-33 [PMID: 14493106]
  28. Neurosci Biobehav Rev. 2014 Sep;45:1-8 [PMID: 24813805]
  29. J Neurosci. 2014 Mar 5;34(10):3706-18 [PMID: 24599469]
  30. Cell Rep. 2020 May 5;31(5):107605 [PMID: 32375054]
  31. Neuropharmacology. 2017 May 1;117:114-123 [PMID: 28159646]
  32. Am J Psychiatry. 2020 Nov 1;177(11):1048-1059 [PMID: 32854534]
  33. Alcohol Clin Exp Res. 2011 Nov;35(11):1938-47 [PMID: 21631540]
  34. Neuropharmacology. 2018 Jan;128:301-313 [PMID: 29079293]
  35. Neuropharmacology. 2019 Jan;144:19-28 [PMID: 30326237]
  36. J Comp Neurol. 2005 Nov 14;492(2):145-77 [PMID: 16196030]
  37. PLoS One. 2012;7(5):e37541 [PMID: 22666364]
  38. Front Neural Circuits. 2014 Feb 03;8:3 [PMID: 24550784]
  39. Addict Biol. 2017 May;22(3):616-628 [PMID: 26804056]
  40. Physiol Rep. 2019 Oct;7(20):e14256 [PMID: 31650716]
  41. J Physiol. 2018 May 1;596(9):1659-1679 [PMID: 29330867]
  42. Front Integr Neurosci. 2014 Jul 18;8:58 [PMID: 25100953]
  43. Front Psychiatry. 2016 Jan 12;6:187 [PMID: 26793129]
  44. Behav Brain Res. 2008 Jan 10;186(1):133-7 [PMID: 17822784]
  45. J Physiol. 2014 Jul 1;592(13):2711-9 [PMID: 24756635]
  46. Neuropharmacology. 2019 May 1;149:35-44 [PMID: 30731135]
  47. eNeuro. 2018 Feb 6;5(1): [PMID: 29445767]
  48. Nat Neurosci. 2013 Jun;16(6):698-705 [PMID: 23624512]
  49. Brain Sci. 2019 Jul 30;9(8): [PMID: 31366097]
  50. Science. 2017 Oct 27;358(6362):478-482 [PMID: 29074767]
  51. eNeuro. 2020 Jun 19;7(3): [PMID: 32439714]
  52. Neuropharmacology. 2018 Sep 15;140:35-42 [PMID: 30056122]
  53. eNeuro. 2016 Dec 23;3(6): [PMID: 28032119]
  54. Lancet Psychiatry. 2016 Aug;3(8):760-773 [PMID: 27475769]
  55. Behav Brain Res. 2003 Nov 30;146(1-2):3-17 [PMID: 14643455]
  56. Nature. 2018 Nov;563(7729):72-78 [PMID: 30382198]
  57. J Neurosci. 2011 Jul 13;31(28):10380-91 [PMID: 21753015]
  58. J Neurosci. 2012 Apr 4;32(14):4959-71 [PMID: 22492051]

Grants

  1. R01 NS031373/NINDS NIH HHS
  2. P50 HD103537/NICHD NIH HHS
  3. R37 NS031373/NINDS NIH HHS
  4. K99 AA027806/NIAAA NIH HHS
  5. R01 MH062646/NIMH NIH HHS

MeSH Term

Animals
Ethanol
Excitatory Postsynaptic Potentials
Female
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Neuronal Plasticity
Prefrontal Cortex
Pyramidal Cells
Receptors, Metabotropic Glutamate
Synapses

Chemicals

Receptors, Metabotropic Glutamate
metabotropic glutamate receptor 2
metabotropic glutamate receptor 3
Ethanol

Word Cloud

Created with Highcharts 10.0.0PFCcellsmGluEtOHneuronspyramidalITtypealcoholAUDfunctiondrinkingprovideBIASynapticprefrontalseekingmodelschangeswithinvoluntaryPyramidalcorticalseveralregionsstructurestelencephalonegadditionstudiesETspecificparametersmicealteredexcitatoryenhancedreceptorpotentialReceptorPlasticityPrefrontalCortexBACKGROUND:medialcortexcrucialregulatingcravingusedisorderpatientsanimalMaladaptivevolitionalethanolintakeassociatedyetsynapticadaptationsconsistentlydetectedrodentleast80%glutamatergicpredominantoutputbrainrelevantincludingIT:basalgangliaamygdalaneocorticaloutsideET:lateralhypothalamusmidbrainmonoaminergicthalamusMETHODS:anatomicaldistinctionslaboratoriesrevealedmaydifferentiatedelectrophysiologicaldistinguishablemakepossiblereadilyclassifyseparablesubtypesemployedvalidatedhyperpolarizationsagratiodiagnosticproxyseparatingrecordeddeep-layerprelimbic1 day45 weeksintermittentaccessexposureRESULTS:MembranepropertiespostsynapticstrengthontoselectivelyslicesincreaseddriveaccompaniedplasticityprovidingtranslationalapproachmitigatecognitivemotivationalrelatedbingeCONCLUSIONS:Togetherinsightneurocircuitsfindingsadditionalrationaledevelopingcompoundspotentiateand/ortreatmentsIncreasedStrengthMouseIntratelencephalicCellsFollowingIntermittentAccessEthanolBingeDrinkingPhysiology

Similar Articles

Cited By