Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid Wasps.

Donald L J Quicke, Buntika A Butcher
Author Information
  1. Donald L J Quicke: Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand. ORCID
  2. Buntika A Butcher: Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand.

Abstract

Parasitoids are predominantly insects that develop as larvae on or inside their host, also usually another insect, ultimately killing it after various periods of parasitism when both parasitoid larva and host are alive. The very large wasp superfamily Ichneumonoidea is composed of parasitoids of other insects and comprises a minimum of 100,000 species. The superfamily is dominated by two similarly sized families, Braconidae and Ichneumonidae, which are collectively divided into approximately 80 subfamilies. Of these, six have been shown to release DNA-containing virus-like particles, encoded within the wasp genome, classified in the virus family Polydnaviridae. Polydnaviruses infect and have profound effects on host physiology in conjunction with various venom and ovarial secretions, and have attracted an immense amount of research interest. Physiological interactions between the remaining ichneumonoids and their hosts result from adult venom gland secretions and in some cases, ovarian or larval secretions. Here we review the literature on the relatively few studies on the effects and chemistry of these ichneumonoid venoms and make suggestions for interesting future research areas. In particular, we highlight relatively or potentially easily culturable systems with features largely lacking in currently studied systems and whose study may lead to new insights into the roles of venom chemistry in host-parasitoid relationships as well as their evolution.

Keywords

References

  1. Toxicon. 2015 Dec 15;108:104-7 [PMID: 26472253]
  2. J Insect Physiol. 2002 Mar;48(3):337-347 [PMID: 12770108]
  3. Toxicon. 1969 May;6(4):303-5 [PMID: 5805124]
  4. J Insect Physiol. 1966 May;12(5):561-8 [PMID: 4307857]
  5. G3 (Bethesda). 2017 Aug 7;7(8):2407-2411 [PMID: 28584080]
  6. Comp Biochem Physiol. 1969 Feb;28(2):603-18 [PMID: 4305108]
  7. Toxins (Basel). 2019 Dec 10;11(12): [PMID: 31835557]
  8. J Insect Sci. 2002;2:10 [PMID: 15455044]
  9. Nature. 1967 May 13;214(5089):700 [PMID: 6069148]
  10. J Gen Virol. 2013 Aug;94(Pt 8):1888-1895 [PMID: 23658210]
  11. Insect Biochem Mol Biol. 2004 May;34(5):485-92 [PMID: 15110870]
  12. Zootaxa. 2014 Nov 14;3884(3):235-52 [PMID: 25543782]
  13. J Invertebr Pathol. 2002 Feb;79(2):129-31 [PMID: 12095244]
  14. J Invertebr Pathol. 2010 May;104(1):51-7 [PMID: 20123105]
  15. PLoS One. 2016 Jul 28;11(7):e0160210 [PMID: 27467595]
  16. J Insect Physiol. 2009 Apr;55(4):321-7 [PMID: 19162033]
  17. J Insect Physiol. 2016 Aug-Sep;91-92:48-55 [PMID: 27374981]
  18. J Insect Sci. 2008;8:8 [PMID: 20345294]
  19. Arch Insect Biochem Physiol. 2005 Jun;59(2):67-79 [PMID: 15898113]
  20. J Insect Physiol. 1974 Nov;20(11):2307-19 [PMID: 4421979]
  21. J Invertebr Pathol. 2006 Jan;91(1):13-8 [PMID: 16375917]
  22. Arch Virol. 2003 Jul;148(7):1431-44 [PMID: 12827471]
  23. Insect Biochem Mol Biol. 2007 May;37(5):453-65 [PMID: 17456440]
  24. Insect Biochem Mol Biol. 1994 Dec;24(10):955-61 [PMID: 7703987]
  25. Dev Comp Immunol. 2003 Apr;27(4):273-82 [PMID: 12590961]
  26. Curr Biol. 2000 Feb 24;10(4):207-10 [PMID: 10704415]
  27. J Insect Physiol. 2010 Jan;56(1):35-41 [PMID: 19769980]
  28. Insect Biochem Mol Biol. 2002 Jul;32(7):729-35 [PMID: 12044489]
  29. Comp Biochem Physiol. 1969 Jul 1;30(1):13-31 [PMID: 4308614]
  30. J Insect Physiol. 2005 Feb;51(2):221-33 [PMID: 15749106]
  31. Toxicon. 1982;20(3):553-62 [PMID: 7101306]
  32. Insect Biochem Mol Biol. 2005 Nov;35(11):1209-23 [PMID: 16203203]
  33. Ann Appl Biol. 1997 Jun;130(3):587-592 [PMID: 32362662]
  34. Insect Biochem Mol Biol. 2000 Oct;30(10):937-46 [PMID: 10899460]
  35. Arch Insect Biochem Physiol. 2015 Nov;90(3):117-30 [PMID: 26089096]
  36. J Insect Physiol. 2013 Feb;59(2):205-12 [PMID: 23103980]
  37. Insect Biochem Mol Biol. 2004 May;34(5):477-83 [PMID: 15110869]
  38. Comp Biochem Physiol C Toxicol Pharmacol. 2003 Apr;134(4):513-20 [PMID: 12727301]
  39. Environ Entomol. 2010 Apr;39(2):449-58 [PMID: 20388274]
  40. J Insect Physiol. 1998 Sep;44(9):807-816 [PMID: 12769876]
  41. J Insect Physiol. 2010 Feb;56(2):195-203 [PMID: 19837078]
  42. Arch Insect Biochem Physiol. 2011 Jul;77(3):99-117 [PMID: 21638307]
  43. J Invertebr Pathol. 2000 Aug;76(2):151-3 [PMID: 11023741]
  44. J Virol. 2007 Jun;81(12):6491-501 [PMID: 17428854]
  45. J Insect Physiol. 2003 Oct;49(10):945-54 [PMID: 14511827]
  46. J Insect Physiol. 2011 Feb;57(2):251-9 [PMID: 21093450]
  47. Microsc Res Tech. 2006 Oct;69(10):820-5 [PMID: 16830326]
  48. Neuroscience. 1983 May;9(1):213-24 [PMID: 6308503]
  49. C R Biol. 2009 Feb-Mar;332(2-3):311-20 [PMID: 19281961]
  50. J Invertebr Pathol. 2004 May-Jun;86(1-2):19-25 [PMID: 15145247]
  51. J Insect Physiol. 2007 Oct;53(10):1072-8 [PMID: 17675053]
  52. Curr Opin Insect Sci. 2014 Dec;6:52-60 [PMID: 32846678]
  53. J Insect Physiol. 2000 Jun 1;46(6):1041-1050 [PMID: 10802117]
  54. Sci Rep. 2017 May 2;7(1):1298 [PMID: 28465546]
  55. Comp Biochem Physiol Part D Genomics Proteomics. 2016 Dec;20:101-110 [PMID: 27636656]
  56. Insects. 2011 Nov 25;2(4):509-14 [PMID: 26467830]
  57. Insect Biochem Mol Biol. 2001 Jan;31(1):57-63 [PMID: 11102835]
  58. Toxicon. 2020 Aug;183:29-35 [PMID: 32445842]
  59. BMC Genomics. 2018 May 30;19(1):420 [PMID: 29848290]
  60. Comp Biochem Physiol C Comp Pharmacol. 1981;68C(1):75-84 [PMID: 6108828]
  61. Toxicon. 1974 Mar;12(2):189-92 [PMID: 4854553]
  62. J Insect Physiol. 2008 Jun;54(6):1041-9 [PMID: 18538786]
  63. Zookeys. 2016 Dec 12;(639):1-164 [PMID: 28138281]
  64. J Insect Physiol. 1998 Sep;44(9):779-784 [PMID: 12769873]
  65. Arch Insect Biochem Physiol. 2013 Jun;83(2):86-100 [PMID: 23606512]
  66. Arch Insect Biochem Physiol. 2006 Dec;63(4):177-87 [PMID: 17103401]
  67. Arch Insect Biochem Physiol. 2009 Jul;71(3):173-90 [PMID: 19479735]
  68. J Insect Physiol. 2005 Feb;51(2):207-20 [PMID: 15749105]
  69. Annu Rev Entomol. 2011;56:313-35 [PMID: 20822448]
  70. Adv Parasitol. 2009;70:217-32 [PMID: 19773072]
  71. Arch Insect Biochem Physiol. 2006 Feb;61(2):87-97 [PMID: 16416450]
  72. Sci Rep. 2016 Oct 25;6:35873 [PMID: 27779241]
  73. Insect Biochem Mol Biol. 2003 Oct;33(10):1017-24 [PMID: 14505695]
  74. BMC Genomics. 2020 Jan 10;21(1):34 [PMID: 31924169]
  75. Adv Parasitol. 2009;70:257-80 [PMID: 19773074]
  76. Insect Biochem Mol Biol. 2004 Jan;34(1):29-41 [PMID: 14723895]
  77. Insect Biochem Mol Biol. 2005 Oct;35(10):1171-80 [PMID: 16102422]
  78. J Insect Physiol. 2003 Apr;49(4):367-75 [PMID: 12769990]
  79. Evolution. 1995 Jun;49(3):427-438 [PMID: 28565087]
  80. Chem Rev. 1996 Nov 7;96(7):2563-2606 [PMID: 11848837]
  81. J Insect Physiol. 2006 Jun;52(6):602-13 [PMID: 16712867]
  82. Zool Scr. 2004 May;33(3):223-237 [PMID: 32336864]
  83. Basic Clin Pharmacol Toxicol. 2011 Feb;108(2):79-83 [PMID: 21156030]
  84. J Virol. 2020 Mar 31;94(8): [PMID: 32024779]
  85. J Econ Entomol. 2019 Mar 21;112(2):906-911 [PMID: 30496438]
  86. J Biol Chem. 2004 Oct 1;279(40):41580-5 [PMID: 15292189]
  87. J Invertebr Pathol. 2010 Mar;103(3):165-9 [PMID: 19682456]
  88. Comp Biochem Physiol B. 1983;75(3):523-30 [PMID: 6884005]
  89. Proc R Soc Lond B Biol Sci. 1960 Mar 1;151:446-67 [PMID: 13854626]
  90. J Insect Physiol. 2013 Jan;59(1):11-8 [PMID: 23201274]
  91. J Invertebr Pathol. 2000 Jul;76(1):33-42 [PMID: 10963401]
  92. Insect Biochem Mol Biol. 2010 Jan;40(1):38-48 [PMID: 20036741]
  93. Arch Insect Biochem Physiol. 2009 Aug;71(4):191-204 [PMID: 19492333]
  94. Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11337-42 [PMID: 16076951]
  95. J Invertebr Pathol. 1999 Mar;73(2):182-8 [PMID: 10066398]
  96. J Insect Physiol. 2000 Aug 1;46(8):1161-1167 [PMID: 10818243]
  97. BMC Genomics. 2014 May 06;15:342 [PMID: 24884493]
  98. J Invertebr Pathol. 1999 Jan;73(1):74-83 [PMID: 9878292]
  99. Proc Natl Acad Sci U S A. 2018 May 15;115(20):5199-5204 [PMID: 29712862]
  100. Comp Biochem Physiol B Biochem Mol Biol. 2005 Jul;141(3):373-81 [PMID: 15936965]
  101. Comp Gen Pharmacol. 1970 Mar;1(1):87-92 [PMID: 5527548]
  102. Toxicon. 1976 Aug;14(5):357-70 [PMID: 982476]
  103. PLoS One. 2016 Jun 29;11(6):e0156997 [PMID: 27355679]
  104. Genome Biol Evol. 2019 Oct 1;11(10):2767-2773 [PMID: 31553440]
  105. Toxicon. 1977;15(6):529-39 [PMID: 71765]
  106. Insect Biochem Mol Biol. 2013 Mar;43(3):292-307 [PMID: 23298679]
  107. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1990;96(2):223-33 [PMID: 1980434]
  108. J Insect Physiol. 2010 Sep;56(9):1178-83 [PMID: 20346952]
  109. Insect Mol Biol. 2008 Jun;17(3):313-24 [PMID: 18477245]
  110. J Insect Physiol. 1999 Sep;45(9):823-833 [PMID: 12770295]
  111. PLoS One. 2017 Jul 24;12(7):e0181940 [PMID: 28742131]
  112. Arch Insect Biochem Physiol. 2016 Jun;92(2):87-107 [PMID: 26890630]
  113. Mol Pathol. 2002 Apr;55(2):65-72 [PMID: 11950951]
  114. Int J Mol Sci. 2020 Jun 29;21(13): [PMID: 32610524]
  115. Toxicon. 1977;15(5):413-21 [PMID: 906024]
  116. J Insect Physiol. 2005 Feb;51(2):171-9 [PMID: 15749102]
  117. J Insect Physiol. 2008 Jun;54(6):1015-22 [PMID: 18501922]
  118. Insect Biochem Mol Biol. 2002 Dec;32(12):1769-73 [PMID: 12429128]
  119. J Insect Physiol. 2011 Jun;57(6):796-800 [PMID: 21419772]
  120. Arch Insect Biochem Physiol. 2006 Mar;61(3):146-56 [PMID: 16482579]
  121. Nature. 1979 Nov 22;282(5737):415-7 [PMID: 228203]
  122. J Insect Physiol. 2005 Feb;51(2):235-41 [PMID: 15749107]
  123. Mol Ecol. 2014 Feb;23(4):890-901 [PMID: 24383716]
  124. Insect Biochem Mol Biol. 2007 Mar;37(3):278-86 [PMID: 17296502]
  125. Toxicon. 1989;27(1):105-14 [PMID: 2711410]
  126. J Gen Virol. 1997 May;78 ( Pt 5):1149-63 [PMID: 9152436]
  127. Insect Biochem Mol Biol. 2004 Jun;34(6):565-71 [PMID: 15147757]

Word Cloud

Created with Highcharts 10.0.0hostvenomsecretionsinsectsvariouswaspsuperfamilyBraconidaeIchneumonidaeeffectsresearchrelativelychemistrysystemsParasitoidspredominantlydeveloplarvaeinsidealsousuallyanotherinsectultimatelykillingperiodsparasitismparasitoidlarvaalivelargeIchneumonoideacomposedparasitoidscomprisesminimum100000speciesdominatedtwosimilarlysizedfamiliescollectivelydividedapproximately80subfamiliessixshownreleaseDNA-containingvirus-likeparticlesencodedwithingenomeclassifiedvirusfamilyPolydnaviridaePolydnavirusesinfectprofoundphysiologyconjunctionovarialattractedimmenseamountinterestPhysiologicalinteractionsremainingichneumonoidshostsresultadultglandcasesovarianlarvalreviewliteraturestudiesichneumonoidvenomsmakesuggestionsinterestingfutureareasparticularhighlightpotentiallyeasilyculturablefeatureslargelylackingcurrentlystudiedwhosestudymayleadnewinsightsroleshost-parasitoidrelationshipswellevolutionReviewVenomsNon-PolydnavirusCarryingIchneumonoidWaspsAphidiusAsobaraHabrobraconPimpla

Similar Articles

Cited By