Sample size calculation for cluster randomization trials with a time-to-event endpoint.

Jianghao Li, Sin-Ho Jung
Author Information
  1. Jianghao Li: Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.
  2. Sin-Ho Jung: Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA. ORCID

Abstract

Cluster randomization trials randomize groups (called clusters) of subjects (called subunits) between intervention arms, and observations are collected from each subject. In this case, subunits within each cluster share common frailties, so that the observations from subunits of each cluster tend to be correlated. Oftentimes, the outcome of a cluster randomization trial is a time-to-event endpoint with censoring. In this article, we propose a closed form sample size formula for weighted rank tests to compare the marginal survival distributions between intervention arms under cluster randomization with possibly variable cluster sizes. Extensive simulation studies are conducted to evaluate the performance of our sample size formula under various design settings. Real study examples are taken to demonstrate our method.

Keywords

References

  1. Howie VM, Schwartz RH. Acute otitis media: one year in general pediatric practice. Am J Dis Child. 1983;137(2):155‐158.
  2. Harper CC, Rocca CH, Thompson KM, et al. Reductions in pregnancy rates in the USA with long‐acting reversible contraception: a cluster randomised trial. Lancet. 2015;386(9993):562‐568.
  3. Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. Biometrika. 1982;69(3):553‐566.
  4. Gehan EA. A generalized Wilcoxon test for comparing arbitrarily singly‐censored samples. Biometrika. 1965;52(1‐2):203‐224.
  5. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. Hoboken, NJ: John Wiley & Sons; 2011.
  6. Tarone RE, Ware J. On distribution‐free tests for equality of survival distributions. Biometrika. 1977;64(1):156‐160.
  7. Fleming TR, Harrington DP. Counting Processes and Survival Analysis. Hoboken, NJ: John Wiley & Sons; 2011.
  8. Andersen PK, Borgan Ø, Gill R, Keiding N. Linear nonparametric tests for comparison of counting processes, with applications to censored survival data, correspondent paper. International Statistical Review/Revue Internationale de Statistique. 1982;50:219‐244.
  9. George SL, Desu MM. Planning the size and duration of a clinical trial studying the time to some critical event. J Chronic Dis. 1974;27(1‐2):15‐24.
  10. Schoenfeld DA. Sample‐size formula for the proportional‐hazards regression model. Biometrics. 1983;39(2):499‐503.
  11. Freedman LS. Tables of the number of patients required in clinical trials using the logrank test. Stat Med. 1982;1(2):121‐129.
  12. Lakatos E. Sample sizes based on the log‐rank statistic in complex clinical trials. Biometrics. 1988;44(1):229‐241.
  13. Lakatos E, Lan KKG. A comparison of sample size methods for the logrank statistic. Stat Med. 1992;11(2):179‐191.
  14. Jung S‐H, Jeong J‐H. Rank tests for clustered survival data. Lifetime Data Anal. 2003;9(1):21‐33.
  15. Xie T, Waksman J. Design and sample size estimation in clinical trials with clustered survival times as the primary endpoint. Stat Med. 2003;22(18):2835‐2846.
  16. Lee EW, Wei LJ, Amato DA, Leurgans S. Cox‐Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations. New York, NY: Springer; 1992:237‐247.
  17. Gangnon RE, Kosorok MR. Sample‐size formula for clustered survival data using weighted log‐rank statistics. Biometrika. 2004;91(2):263‐275.
  18. Jung S‐H. Sample size calculation for weighted rank tests comparing survival distributions under cluster randomization: a simulation method. J Biopharm Stat. 2007;17(5):839‐849.
  19. Hayes RJ, Bennett S. Simple sample size calculation for cluster‐randomized trials. Int J Epidemiol. 1999;28(2):319‐326.
  20. Jahn‐Eimermacher A, Ingel K, Schneider A. Sample size in cluster‐randomized trials with time to event as the primary endpoint. Stat Med. 2013;32(5):739‐751.
  21. Manatunga AK, Chen S. Sample size estimation for survival outcomes in cluster‐randomized studies with small cluster sizes. Biometrics. 2000;56(2):616‐621.
  22. Nelson W. Hazard plotting for incomplete failure data. J Qual Technol. 1969;1(1):27‐52.
  23. Aalen O. Nonparametric inference for a family of counting processes. Ann Stat. 1978;6(4):701‐726.
  24. Clayton D, Cuzick J. Multivariate generalizations of the proportional Hazards model. J Royal Stat Soc Ser A (General). 1985;148(2):82‐108.
  25. Jung S‐H. Sample size calculation for the weighted rank statistics with paired survival data. Stat Med. 2008;27(17):3350‐3365.

MeSH Term

Cluster Analysis
Computer Simulation
Humans
Random Allocation
Randomized Controlled Trials as Topic
Research Design
Sample Size

Word Cloud

Created with Highcharts 10.0.0clusterrandomizationsizesubunitstrialscalledinterventionarmsobservationstime-to-eventendpointcensoringsampleformulaweightedrankvariableClusterrandomizegroupsclusterssubjectscollectedsubjectcasewithinsharecommonfrailtiestendcorrelatedOftentimesoutcometrialarticleproposeclosedformtestscomparemarginalsurvivaldistributionspossiblysizesExtensivesimulationstudiesconductedevaluateperformancevariousdesignsettingsRealstudyexamplestakendemonstratemethodSamplecalculationinflationfactorintraclustercorrelationcoefficienttest

Similar Articles

Cited By