Chaperone-Mediated Stress Sensing in Mycobacterium tuberculosis Enables Fast Activation and Sustained Response.

Satyajit D Rao, Pratik Datta, Maria Laura Gennaro, Oleg A Igoshin
Author Information
  1. Satyajit D Rao: Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA. ORCID
  2. Pratik Datta: Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA.
  3. Maria Laura Gennaro: Public Health Research Institute, New Jersey Medical School, Newark, New Jersey, USA. ORCID
  4. Oleg A Igoshin: Department of Bioengineering and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA igoshin@rice.edu. ORCID

Abstract

Dynamical properties of gene regulatory networks are tuned to ensure bacterial survival. In mycobacteria, the MprAB-σ network responds to the presence of stressors, such as surfactants that cause surface stress. Positive feedback loops in this network were previously predicted to cause hysteresis, i.e., different responses to identical stressor levels for prestressed and unstressed cells. Here, we show that hysteresis does not occur in nonpathogenic but does occur in However, the observed rapid temporal response in is inconsistent with the model predictions. To reconcile these observations, we implement a recently proposed mechanism for stress sensing, namely, the release of MprB from the inhibitory complex with the chaperone DnaK upon the stress exposure. Using modeling and parameter fitting, we demonstrate that this mechanism can accurately describe the experimental observations. Furthermore, we predict perturbations in DnaK expression that can strongly affect dynamical properties. Experiments with these perturbations agree with model predictions, confirming the role of DnaK in fast and sustained response. Gene regulatory networks controlling stress response in mycobacterial species have been linked to persistence switches that enable bacterial dormancy within a host. However, the mechanistic basis of switching and stress sensing is not fully understood. In this paper, combining quantitative experiments and mathematical modeling, we uncover how interactions between two master regulators of stress response-the MprAB two-component system (TCS) and the alternative sigma factor σ-shape the dynamical properties of the surface stress network. The result show hysteresis (history dependence) in the response of the pathogenic bacterium to surface stress and lack of hysteresis in nonpathogenic Furthermore, to resolve the apparent contradiction between the existence of hysteresis and fast activation of the response, we utilize a recently proposed role of chaperone DnaK in stress sensing. These result leads to a novel system-level understanding of bacterial stress response dynamics.

Keywords

References

  1. Microbiol Mol Biol Rev. 2011 Dec;75(4):566-82 [PMID: 22126994]
  2. J Bacteriol. 2008 Sep;190(17):5963-71 [PMID: 18606740]
  3. Nature. 1991 Jun 6;351(6326):456-60 [PMID: 1904554]
  4. Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):241-6 [PMID: 12506197]
  5. Phys Biol. 2010 Aug 23;7(3):036005 [PMID: 20733247]
  6. Curr Opin Microbiol. 2010 Apr;13(2):184-9 [PMID: 20149717]
  7. J Bacteriol. 2001 Dec;183(24):6979-90 [PMID: 11717254]
  8. Bioessays. 2008 Jun;30(6):542-55 [PMID: 18478531]
  9. PLoS One. 2014 Sep 10;9(9):e107383 [PMID: 25207645]
  10. J Bacteriol. 2006 Mar;188(6):2134-43 [PMID: 16513743]
  11. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16337-42 [PMID: 17060629]
  12. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12706-11 [PMID: 11675502]
  13. Infect Immun. 2003 Dec;71(12):6962-70 [PMID: 14638785]
  14. Annu Rev Microbiol. 2001;55:139-63 [PMID: 11544352]
  15. Mol Microbiol. 2003 Apr;48(1):77-84 [PMID: 12657046]
  16. Math Biosci. 2011 May;231(1):76-89 [PMID: 21385588]
  17. PLoS One. 2008 Mar 12;3(3):e1771 [PMID: 18335046]
  18. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17775-9 [PMID: 16303867]
  19. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  20. Int J Biochem Cell Biol. 2009 Feb;41(2):380-9 [PMID: 18775503]
  21. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19931-5 [PMID: 18077424]
  22. Bioessays. 2000 Aug;22(8):753-60 [PMID: 10918306]
  23. Mol Microbiol. 2010 Feb;75(3):538-42 [PMID: 20025668]
  24. PLoS Genet. 2013;9(8):e1003706 [PMID: 23990799]
  25. Mol Microbiol. 2015 Aug;97(3):408-22 [PMID: 25899163]
  26. Mol Microbiol. 1999 Jan;31(2):715-24 [PMID: 10027986]
  27. Nat Rev Genet. 2003 Jan;4(1):39-49 [PMID: 12509752]
  28. Mol Microbiol. 2010 Feb;75(3):592-606 [PMID: 20025669]
  29. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6 [PMID: 12522261]
  30. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17457-62 [PMID: 18987315]
  31. J Bacteriol. 2014 Jan;196(2):391-406 [PMID: 24187094]
  32. Biotechnol Bioeng. 2011 Dec;108(12):2777-93 [PMID: 21809331]
  33. J Bacteriol. 2004 Feb;186(4):895-902 [PMID: 14761983]
  34. Nat Rev Microbiol. 2003 Nov;1(2):97-105 [PMID: 15035039]
  35. Nat Rev Microbiol. 2011 Oct 11;9(11):817-28 [PMID: 21986901]
  36. J Bacteriol. 2005 Jan;187(1):202-12 [PMID: 15601704]
  37. Mol Microbiol. 2007 Jul;65(2):261-76 [PMID: 17630969]
  38. J Biol Chem. 2000 Jul 28;275(30):22948-54 [PMID: 10807931]
  39. PLoS Comput Biol. 2010 Feb 12;6(2):e1000676 [PMID: 20168997]
  40. PLoS Pathog. 2011 Sep;7(9):e1002251 [PMID: 21980284]
  41. J Bacteriol. 1999 Sep;181(17):5263-72 [PMID: 10464196]
  42. Science. 2010 Mar 12;327(5971):1389-91 [PMID: 20223989]
  43. Mol Microbiol. 2001 Jul;41(2):423-37 [PMID: 11489128]

Grants

  1. R01 AI104615/NIAID NIH HHS
  2. UH2 AI122309/NIAID NIH HHS
  3. UH3 AI122309/NIAID NIH HHS
  4. R01 GM096189/NIGMS NIH HHS
  5. R01 HL149450/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0stressresponsehysteresisDnaKpropertiesregulatorybacterialnetworksurfacesensingmodelingnetworkscauseshowoccurnonpathogenicHowevermodelpredictionsobservationsrecentlyproposedmechanismchaperonecanFurthermoreperturbationsdynamicalrolefastmathematicaltwo-componentsigmaresultMycobacteriumtuberculosisDynamicalgenetunedensuresurvivalmycobacteriaMprAB-σrespondspresencestressorssurfactantsPositivefeedbackloopspreviouslypredictediedifferentresponsesidenticalstressorlevelsprestressedunstressedcellsobservedrapidtemporalinconsistentreconcileimplementnamelyreleaseMprBinhibitorycomplexuponexposureUsingparameterfittingdemonstrateaccuratelydescribeexperimentalpredictexpressionstronglyaffectExperimentsagreeconfirmingsustainedGenecontrollingmycobacterialspecieslinkedpersistenceswitchesenabledormancywithinhostmechanisticbasisswitchingfullyunderstoodpapercombiningquantitativeexperimentsuncoverinteractionstwomasterregulatorsresponse-theMprABsystemTCSalternativefactorσ-shapehistorydependencepathogenicbacteriumlackresolveapparentcontradictionexistenceactivationutilizeleadsnovelsystem-levelunderstandingdynamicsChaperone-MediatedStressSensingEnablesFastActivationSustainedResponsechaperonesfactorssystems

Similar Articles

Cited By