Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing.

Christoph Püning, Yulan Su, Xiaonan Lu, Greta Gölz
Author Information
  1. Christoph Püning: Institute of Food Safety and Food Hygiene, Free University Berlin, Koenigsweg 69D, 14163, Berlin, Germany.
  2. Yulan Su: Institute of Food Safety and Food Hygiene, Free University Berlin, Koenigsweg 69D, 14163, Berlin, Germany.
  3. Xiaonan Lu: Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
  4. Greta Gölz: Institute of Food Safety and Food Hygiene, Free University Berlin, Koenigsweg 69D, 14163, Berlin, Germany. greta.goelz@fu-berlin.de.

Abstract

Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The luxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.

Keywords

References

  1. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. mBio 9. https://doi.org/10.1128/mBio.02331-17
  2. Adler L, Alter T, Sharbati S, Golz G (2014) Phenotypes of Campylobacter jejuni luxS mutants are depending on strain background, kind of mutation and experimental conditions. PLoS ONE 9:e104399. https://doi.org/10.1371/journal.pone.0104399 [DOI: 10.1371/journal.pone.0104399]
  3. Adler L, Alter T, Sharbati S, Gölz G (2015) The signalling molecule autoinducer-2 is not internalised in Campylobacter jejuni. Berl Munch Tierarztl 128:6
  4. Asakura H, Yamasaki M, Yamamoto S, Igimi S (2007) Deletion of peb4 gene impairs cell adhesion and biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett 275:278–285. https://doi.org/10.1111/j.1574-6968.2007.00893.x [DOI: 10.1111/j.1574-6968.2007.00893.x]
  5. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43(3):313–351. https://doi.org/10.1080/1040841X.2016.1208146 [DOI: 10.1080/1040841X.2016.1208146]
  6. Bae J, Oh E, Jeon B (2014) Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrob Agents Chemother 58(12):7573–5. https://doi.org/10.1128/AAC.04066-14
  7. Bezek K, Kurincic M, Knauder E, Klancnik A, Raspor P, Bucar F, Smole Mozina S (2016) Attenuation of adhesion, biofilm formation and quorum sensing of Campylobacter jejuni by Euodia ruticarpa. Phytother Res 30:1527–1532. https://doi.org/10.1002/ptr.5658 [DOI: 10.1002/ptr.5658]
  8. Bronowski C, James CE, Winstanley C (2014) Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett 356:8–19. https://doi.org/10.1111/1574-6968.12488 [DOI: 10.1111/1574-6968.12488]
  9. Bronnec V, Turonova H, Bouju A, Cruveiller S, Rodrigues R, Demnerova K, Tresse O, Haddad N, Zagorec M (2016) Adhesion, biofilm formation, and genomic features of Campylobacter jejuni Bf, an atypical strain able to grow under aerobic conditions. Front Microbiol 7:1002. https://doi.org/10.3389/fmicb.2016.01002 [DOI: 10.3389/fmicb.2016.01002]
  10. Brown HL, Reuter M, Hanman K, Betts RP, van Vliet AH (2015) Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni. PLoS ONE 10:e0121680. https://doi.org/10.1371/journal.pone.0121680 [DOI: 10.1371/journal.pone.0121680]
  11. Brown HL, Reuter M, Salt LJ, Cross KL, Betts RP, van Vliet AH (2014) Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni. Appl Environ Microbiol 80:7053–7060. https://doi.org/10.1128/AEM.02614-14 [DOI: 10.1128/AEM.02614-14]
  12. Cain JA, Dale AL, Niewold P, Klare WP, Man L, White MY, Scott NE, Cordwell SJ (2019) Proteomics reveals multiple phenotypes associated with n-linked glycosylation in Campylobacter jejuni. Mol Cell Proteomics 18:715–734. https://doi.org/10.1074/mcp.RA118.001199 [DOI: 10.1074/mcp.RA118.001199]
  13. Castillo S, Heredia N, Arechiga-Carvajal E, Garcia S (2014) Citrus extracts as inhibitors of quorum sensing, biofilm formation and motility of Campylobacter jejuni. Food Biotechnol 28:106–122. https://doi.org/10.1080/08905436.2014.895947 [DOI: 10.1080/08905436.2014.895947]
  14. Castillo S, Heredia N, Garcia S (2015) 2(5H)-Furanone, epigallocatechin gallate, and a citric-based disinfectant disturb quorum-sensing activity and reduce motility and biofilm formation of Campylobacter jejuni. Folia Microbiol (Praha) 60:89–95. https://doi.org/10.1007/s12223-014-0344-0 [DOI: 10.1007/s12223-014-0344-0]
  15. Chandrashekhar K, Gangaiah D, Pina-Mimbela R, Kassem II, Jeon BH, Rajashekara G (2015) Transducer like proteins of Campylobacter jejuni 81–176: role in chemotaxis and colonization of the chicken gastrointestinal tract. Front Cell Infect Microbiol 5:46. https://doi.org/10.3389/fcimb.2015.00046 [DOI: 10.3389/fcimb.2015.00046]
  16. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549. https://doi.org/10.1038/415545a [DOI: 10.1038/415545a]
  17. Chen X, Zhang L, Zhang M, Liu H, Lu P, Lin K (2018) Quorum sensing inhibitors: a patent review (2014–2018). Expert Opin Ther Pat 28:849–865. https://doi.org/10.1080/13543776.2018.1541174 [DOI: 10.1080/13543776.2018.1541174]
  18. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordonez A (2016) New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front Microbiol 7:1641. https://doi.org/10.3389/fmicb.2016.01641 [DOI: 10.3389/fmicb.2016.01641]
  19. Cullen TW, O’Brien JP, Hendrixson DR, Giles DK, Hobb RI, Thompson SA, Brodbelt JS, Trent MS (2013) EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence. Infect Immun 81:430–440. https://doi.org/10.1128/IAI.01046-12 [DOI: 10.1128/IAI.01046-12]
  20. Devaraj A et al (2019) The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates. Proc Natl Acad Sci USA 116(50):25068–25077. https://doi.org/10.1073/pnas.1909017116 [DOI: 10.1073/pnas.1909017116]
  21. Drozd M, Chandrashekhar K, Rajashekara G (2014) Polyphosphate-mediated modulation of Campylobacter jejuni biofilm growth and stability. Virulence 5:680–690. https://doi.org/10.4161/viru.34348 [DOI: 10.4161/viru.34348]
  22. Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491. https://doi.org/10.1046/j.1365-2958.2003.03803.x [DOI: 10.1046/j.1365-2958.2003.03803.x]
  23. Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M, Flint A, van Vliet AH, Stintzi A, Szymanski CM (2016) L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 101:575–589. https://doi.org/10.1111/mmi.13409 [DOI: 10.1111/mmi.13409]
  24. El Abbar FM, Li J, Owen HC, Daugherty CL, Fulmer CA, Bogacz M, Thompson SA (2019) RNA binding by the Campylobacter jejuni post-transcriptional regulator csrA. Front Microbiol 10:1776. https://doi.org/10.3389/fmicb.2019.01776 [DOI: 10.3389/fmicb.2019.01776]
  25. Elvers KT, Park SF (2002) Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signalling molecule. Microbiology 148:1475–1481. https://doi.org/10.1099/00221287-148-5-1475 [DOI: 10.1099/00221287-148-5-1475]
  26. Feng J, Lamour G, Xue R, Mirvakliki MN, Hatzikiriakos SG, Xu J, Li H, Wang S, Lu X (2016) Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. Int J Food Microbiol 238:172–182. https://doi.org/10.1016/j.ijfoodmicro.2016.09.008 [DOI: 10.1016/j.ijfoodmicro.2016.09.008]
  27. Feng J, Ma L, Nie J, Konkel ME, Lu X (2018) Environmental stress-induced bacterial lysis and extracellular DNA release contribute to Campylobacter jejuni biofilm formation. Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.02068-17
  28. Fields JA, Thompson SA (2008) Campylobacter jejuni csrA mediates oxidative stress responses, biofilm formation, and host cell invasion. J Bacteriol 190:3411–3416. https://doi.org/10.1128/JB.01928-07 [DOI: 10.1128/JB.01928-07]
  29. Fields JA, Li J, Gulbronson CJ, Hendrixson DR, Thompson SA (2016) Campylobacter jejuni csrA regulates metabolic and virulence associated proteins and is necessary for mouse colonization. PLoS ONE 11:e0156932. https://doi.org/10.1371/journal.pone.0156932 [DOI: 10.1371/journal.pone.0156932]
  30. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94 [DOI: 10.1038/nrmicro.2016.94]
  31. Furniss RCD, Clements A (2018) Regulation of the locus of enterocyte effacement in attaching and effacing pathogens. J Bacteriol 200. https://doi.org/10.1128/JB.00336-17
  32. Gangaiah D, Kassem II, Liu Z, Rajashekara G (2009) Importance of polyphosphate kinase 1 for Campylobacter jejuni viable-but-nonculturable cell formation, natural transformation, and antimicrobial resistance. Appl Environ Microbiol 75:7838–7849. https://doi.org/10.1128/AEM.01603-09 [DOI: 10.1128/AEM.01603-09]
  33. Gangaiah D, Liu Z, Arcos J, Kassem II, Sanad Y, Torrelles JB, Rajashekara G (2010) Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni. PLoS ONE 5:e12142. https://doi.org/10.1371/journal.pone.0012142 [DOI: 10.1371/journal.pone.0012142]
  34. Golz G, Adler L, Huehn S, Alter T (2012) LuxS distribution and AI-2 activity of Campylobacter spp. J Appl Microbiol 112:571–578. https://doi.org/10.1111/j.1365-2672.2011.05221.x [DOI: 10.1111/j.1365-2672.2011.05221.x]
  35. Golz G, Kittler S, Malakauskas M, Alter T (2018) Survival of Campylobacter in the food chain and the environment. Curr Clin Microbiol 5:126–134. https://doi.org/10.1007/s40588-018-0092-z [DOI: 10.1007/s40588-018-0092-z]
  36. Guerry P (2007) Campylobacter flagella: not just for motility. Trends Microbiol 15:456–461. https://doi.org/10.1016/j.tim.2007.09.006 [DOI: 10.1016/j.tim.2007.09.006]
  37. Hall CW, Mah TF (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41(3):276–301. https://doi.org/10.1093/femsre/fux010 [DOI: 10.1093/femsre/fux010]
  38. Hansson I, Sandberg M, Habib I, Lowman R, Engvall EO (2018) Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound Emerg Dis. 65:30–48. https://doi.org/10.1111/tbed.12870 [DOI: 10.1111/tbed.12870]
  39. He Y, Frye JG, Strobaugh TP, Chen CY (2008) Analysis of AI-2/luxS-dependent transcription in Campylobacter jejuni strain 81–176. Foodborne Pathog Dis 5:399–415. https://doi.org/10.1089/fpd.2008.0106 [DOI: 10.1089/fpd.2008.0106]
  40. Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C, Wood TK, Manson MD, Jayaraman A (2011) Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol 193:768–773. https://doi.org/10.1128/JB.01196-10 [DOI: 10.1128/JB.01196-10]
  41. Herzberg M, Kaye IK, Peti W, Wood TK (2006) YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 188:587–598. https://doi.org/10.1128/JB.188.2.587-598.2006 [DOI: 10.1128/JB.188.2.587-598.2006]
  42. Holmes K, Tavender TJ, Winzer K, Wells JM, Hardie KR (2009) AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro. BMC Microbiol 9:214. https://doi.org/10.1186/1471-2180-9-214 [DOI: 10.1186/1471-2180-9-214]
  43. Howard SL, Jagannathan A, Soo EC, Hui JP, Aubry AJ, Ahmed I, Karlyshev A, Kelly JF, Jones MA, Stevens MP, Logan SM, Wren BW (2009) Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 77:2544–2556. https://doi.org/10.1128/IAI.01425-08 [DOI: 10.1128/IAI.01425-08]
  44. Hwang S, Kim M, Ryu S, Jeon B (2011) Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS ONE 6:e22300. https://doi.org/10.1371/journal.pone.0022300 [DOI: 10.1371/journal.pone.0022300]
  45. Indikova I, Humphrey TJ, Hilbert F (2015) Survival with a helping hand: Campylobacter and microbiota. Front Microbiol 6:1266. https://doi.org/10.3389/fmicb.2015.01266 [DOI: 10.3389/fmicb.2015.01266]
  46. Jeon B, Itoh K, Misawa N, Ryu S (2003) Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol Immunol 47:833–839. https://doi.org/10.1111/j.1348-0421.2003.tb03449.x [DOI: 10.1111/j.1348-0421.2003.tb03449.x]
  47. Jiang Q, Chen J, Yang C, Yin Y, Yao K (2019) Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int 2019:2015978. https://doi.org/10.1155/2019/2015978 [DOI: 10.1155/2019/2015978]
  48. Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396. https://doi.org/10.1099/mic.0.28358-0 [DOI: 10.1099/mic.0.28358-0]
  49. Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC, Sanders G, Austin J, Kelly J, Szymanski CM (2006) Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 188:4312–4320. https://doi.org/10.1128/JB.01975-05 [DOI: 10.1128/JB.01975-05]
  50. Kaplan JB (2010) Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89(3):205–18. https://doi.org/10.1177/0022034509359403
  51. Karlyshev AV, Linton D, Gregson NA, Lastovica AJ, Wren BW (2000) Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol Microbiol 35(3):529–541. https://doi.org/10.1046/j.1365-2958.2000.01717.x [DOI: 10.1046/j.1365-2958.2000.01717.x]
  52. Kassem II, Candelero-Rueda RA, Esseili KA, Rajashekara G (2017) Formate simultaneously reduces oxidase activity and enhances respiration in Campylobacter jejuni. Sci Rep 7:40117. https://doi.org/10.1038/srep40117 [DOI: 10.1038/srep40117]
  53. Kim JS, Park C, Kim YJ (2015) Role of flgA for flagellar biosynthesis and biofilm formation of Campylobacter jejuni NCTC11168. J Microbiol Biotechn 25:1871–1879. https://doi.org/10.4014/jmb.1504.04080 [DOI: 10.4014/jmb.1504.04080]
  54. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med 3:a010306. https://doi.org/10.1101/cshperspect.a010306 [DOI: 10.1101/cshperspect.a010306]
  55. Kreuder AJ, Ruddell B, Mou K, Hassall A, Zhang Q, Plummer PJ (2020) Small non-coding RNA CjNC110 influences motility, autoagglutination, AI-2 localization, hydrogen peroxide sensitivity and chicken colonization in Campylobacter jejuni. Infect Immun. https://doi.org/10.1128/IAI.00245-20 [DOI: 10.1128/IAI.00245-20]
  56. Kumar A, Gangaiah D, Torrelles JB, Rajashekara G (2016) Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni. World J Gastroenterol 22:7402–7414. https://doi.org/10.3748/wjg.v22.i33.7402 [DOI: 10.3748/wjg.v22.i33.7402]
  57. Lamas A, Regal P, Vazquez B, Miranda JM, Cepeda A, Franco CM (2018) Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. J Sci Food Agr 98:4014–4032. https://doi.org/10.1002/jsfa.8945 [DOI: 10.1002/jsfa.8945]
  58. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111. https://doi.org/10.1128/MMBR.00046-12 [DOI: 10.1128/MMBR.00046-12]
  59. Li J, Feng J, Ma L, de la Fuente NC, Golz G, Lu X (2017) Effects of meat juice on biofilm formation of Campylobacter and Salmonella. Int J Food Microbiol 253:20–28. https://doi.org/10.1016/j.ijfoodmicro.2017.04.013 [DOI: 10.1016/j.ijfoodmicro.2017.04.013]
  60. Ligowska M, Cohn MT, Stabler RA, Wren BW, Brondsted L (2011) Effect of chicken meat environment on gene expression of Campylobacter jejuni and its relevance to survival in food. Int J Food Microbiol 145(Suppl 1):S111–S115. https://doi.org/10.1016/j.ijfoodmicro.2010.08.027 [DOI: 10.1016/j.ijfoodmicro.2010.08.027]
  61. Lim ES, Kim JS (2017) Role of eptC in Biofilm Formation by Campylobacter jejuni NCTC11168 on Polystyrene and Glass Surfaces. J Microbiol Biotechn 27:1609–1616. https://doi.org/10.4014/jmb.1610.10046 [DOI: 10.4014/jmb.1610.10046]
  62. Melo RT, Mendonca EP, Monteiro GP, Siqueira MC, Pereira CB, Peres PABM, Fernandez H, Rossi DA (2017) Intrinsic and extrinsic aspects on Campylobacter jejuni biofilms. Front Microbiol 8:1332. https://doi.org/10.3389/fmicb.2017.01332 [DOI: 10.3389/fmicb.2017.01332]
  63. Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314. https://doi.org/10.1016/s0092-8674(02)00829-2 [DOI: 10.1016/s0092-8674(02)00829-2]
  64. Moorhead SM, Griffiths MW (2011) Expression and characterization of cell-signalling molecules in Campylobacter jejuni. J Appl Microbiol 110:786–800. https://doi.org/10.1111/j.1365-2672.2010.04934.x [DOI: 10.1111/j.1365-2672.2010.04934.x]
  65. Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ (2014) A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 5:782. https://doi.org/10.3389/fmicb.2014.00782 [DOI: 10.3389/fmicb.2014.00782]
  66. Mou KT, Plummer PJ (2016) The impact of the luxS mutation on phenotypic expression of factors critical for Campylobacter jejuni colonization. Vet Microbiol 192:43–51. https://doi.org/10.1016/j.vetmic.2016.06.011 [DOI: 10.1016/j.vetmic.2016.06.011]
  67. Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17:371–382. https://doi.org/10.1038/s41579-019-0186-5 [DOI: 10.1038/s41579-019-0186-5]
  68. Naito M, Frirdich E, Fields JA, Pryjma M, Li J, Cameron A, Gilbert M, Thompson SA, Gaynor EC (2010) Effects of sequential Campylobacter jejuni 81–176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J Bacteriol 192:2182–2192. https://doi.org/10.1128/JB.01222-09 [DOI: 10.1128/JB.01222-09]
  69. Oh E, Jeon B (2014) Role of alkyl hydroperoxide reductase (AhpC) in the biofilm formation of Campylobacter jejuni. PLoS ONE 9:e87312. https://doi.org/10.1371/journal.pone.0087312 [DOI: 10.1371/journal.pone.0087312]
  70. Oh E, Kim JC, Jeon B (2016) Stimulation of biofilm formation by oxidative stress in Campylobacter jejuni under aerobic conditions. Virulence 7:846–851. https://doi.org/10.1080/21505594.2016.1197471 [DOI: 10.1080/21505594.2016.1197471]
  71. Paluch E, Rewak-Soroczynska J, Jedrusik I, Mazurkiewicz E, Jermakow K (2020) Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol 104:1871–1881. https://doi.org/10.1007/s00253-020-10349-w [DOI: 10.1007/s00253-020-10349-w]
  72. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. https://doi.org/10.1038/nrmicro.2016.89 [DOI: 10.1038/nrmicro.2016.89]
  73. Pascoe B, Meric G, Murray S, Yahara K, Mageiros L, Bowen R, Jones NH, Jeeves RE, Lappin-Scott HM, Asakura H, Sheppard SK (2015) Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni. Environ Microbiol 17:4779–4789. https://doi.org/10.1111/1462-2920.13051 [DOI: 10.1111/1462-2920.13051]
  74. Pascoe B, Williams LK, Calland JK, Meric G, Hitchings MD, Dyer M, Ryder J, Shaw S, Lopes BS, Chintoan-Uta C, Allan E, Vidal A, Fearnley C, Everest P, Pachebat JA, Cogan TA, Stevens MP, Humphrey TJ, Wilkinson TS, Cody AJ, Colles FM, Jolley KA, Maiden MCJ, Strachan N, Pearson BM, Linton D, Wren BW, Parkhill J, Kelly DJ, van Vliet AHM, Forbes KJ, Sheppard SK (2019) Domestication of Campylobacter jejuni NCTC11168. Microb Genom 5. https://doi.org/10.1099/mgen.0.000279
  75. Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181. https://doi.org/10.1111/j.1574-6976.2012.00345.x [DOI: 10.1111/j.1574-6976.2012.00345.x]
  76. Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78. https://doi.org/10.1016/j.mib.2016.01.004 .
  77. Plummer P, Sahin O, Burrough E, Sippy R, Mou K, Rabenold J, Yaeger M, Zhang Q (2012) Critical role of luxS in the virulence of Campylobacter jejuni in a guinea pig model of abortion. Infect Immun 80:585–593. https://doi.org/10.1128/IAI.05766-11 [DOI: 10.1128/IAI.05766-11]
  78. Plummer P, Zhu J, Akiba M, Pei D, Zhang Q (2011) Identification of a key amino acid of luxS involved in AI-2 production in Campylobacter jejuni. PLoS ONE 6:e15876. https://doi.org/10.1371/journal.pone.0015876 [DOI: 10.1371/journal.pone.0015876]
  79. Plummer PJ (2012) LuxS and quorum-sensing in Campylobacter. Front Cell Infect Microbiol 2:22. https://doi.org/10.3389/fcimb.2012.00022 [DOI: 10.3389/fcimb.2012.00022]
  80. Quinones B, Miller WG, Bates AH, Mandrell RE (2009) Autoinducer-2 production in Campylobacter jejuni contributes to chicken colonization. Appl Environ Microbiol 75:281–285. https://doi.org/10.1128/AEM.01803-08 [DOI: 10.1128/AEM.01803-08]
  81. Rader BA, Wreden C, Hicks KG, Sweeney EG, Ottemann KM, Guillemin K (2011) Helicobacter pylori perceives the quorum-sensing molecule AI-2 as a chemorepellent via the chemoreceptor TlpB. Microbiology 157:2445–2455. https://doi.org/10.1099/mic.0.049353-0 [DOI: 10.1099/mic.0.049353-0]
  82. Rahman H, King RM, Shewell LK, Semchenko EA, Hartley-Tassell LE, Wilson JC, Day CJ, Korolik V (2014) Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3) of Campylobacter jejuni. PLoS Pathog 10:e1003822. https://doi.org/10.1371/journal.ppat.1003822 [DOI: 10.1371/journal.ppat.1003822]
  83. Rathbun KM, Hall JE, Thompson SA (2009) Cj0596 is a periplasmic peptidyl prolyl cis-trans isomerase involved in Campylobacter jejuni motility, invasion, and colonization. BMC Microbiol 9:160. https://doi.org/10.1186/1471-2180-9-160 [DOI: 10.1186/1471-2180-9-160]
  84. Reeser RJ, Medler RT, Billington SJ, Jost BH, Joens LA (2007) Characterization of Campylobacter jejuni biofilms under defined growth conditions. Appl Environ Microbiol 73:1908–1913. https://doi.org/10.1128/AEM.00740-06 [DOI: 10.1128/AEM.00740-06]
  85. Rettner RE, Saier MH Jr (2010) The autoinducer-2 exporter superfamily. J Mol Microbiol Biotechnol 18:195–205. https://doi.org/10.1159/000316420 [DOI: 10.1159/000316420]
  86. Reuter M, Mallett A, Pearson BM, van Vliet AH (2010) Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 76:2122–2128. https://doi.org/10.1128/AEM.01878-09 [DOI: 10.1128/AEM.01878-09]
  87. Reuter M, Ultee E, Toseafa Y, Tan A, van Vliet AHM (2020) Inactivation of the core cheVAWY chemotaxis genes disrupts chemotactic motility and organised biofilm formation in Campylobacter jejuni. FEMS Microbiol Lett https://doi.org/10.1093/femsle/fnaa198
  88. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9:522–554. https://doi.org/10.1080/21505594.2017.1313372 [DOI: 10.1080/21505594.2017.1313372]
  89. Scott NE, Nothaft H, Edwards AV, Labbate M, Djordjevic SP, Larsen MR, Szymanski CM, Cordwell SJ (2012) Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. J Biol Chem 287:29384–29396. https://doi.org/10.1074/jbc.M112.380212 [DOI: 10.1074/jbc.M112.380212]
  90. Sharma K, Pagedar Singh A (2018) Antibiofilm effect of DNase against single and mixed species biofilm. Foods 7(3):42. https://doi.org/10.3390/foods7030042 [DOI: 10.3390/foods7030042]
  91. Sharma D, Misba L, Khan AU (2019) Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 8:76. https://doi.org/10.1186/s13756-019-0533-3 [DOI: 10.1186/s13756-019-0533-3]
  92. Simunovic K, Ramic D, Xu C, Smole Mozina S (2020) Modulation of Campylobacter jejuni motility, adhesion to polystyrene surfaces, and invasion of INT407 cells by quorum-sensing inhibition. Microorganisms 8. https://doi.org/10.3390/microorganisms8010104
  93. Stetsenko VV, Efimochkina NR, Pichugina TV (2019) Growth and persistence of Campylobacter jejuni in foodstuffs. Bull Exp Biol Med 166:759–765. https://doi.org/10.1007/s10517-019-04435-x [DOI: 10.1007/s10517-019-04435-x]
  94. Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, Gaynor EC (2009) The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuni influences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71:253–272. https://doi.org/10.1111/j.1365-2958.2008.06534.x [DOI: 10.1111/j.1365-2958.2008.06534.x]
  95. Svensson SL, Pryjma M, Gaynor EC (2014) Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS ONE 9:e106063. https://doi.org/10.1371/journal.pone.0106063 [DOI: 10.1371/journal.pone.0106063]
  96. Tazumi A, Negoro M, Tomiyama Y, Misawa N, Itoh K, Moore JE, Millar BC, Matsuda M (2011) Uneven distribution of the luxS gene within the genus Campylobacter. Br J Biomed Sci 68:19–22. https://doi.org/10.1080/09674845.2011.11732836 [DOI: 10.1080/09674845.2011.11732836]
  97. Teh AH, Lee SM, Dykes GA (2014) Does Campylobacter jejuni form biofilms in food-related environments? Appl Environ Microbiol 80(17):5154–5160. https://doi.org/10.1128/AEM.01493-14 [DOI: 10.1128/AEM.01493-14]
  98. Teh AH, Lee SM, Dykes GA (2016) The influence of prior modes of growth, temperature, medium, and substrate surface on biofilm formation by antibiotic-resistant Campylobacter jejuni. Curr Microbiol 73:859–866. https://doi.org/10.1007/s00284-016-1134-5 [DOI: 10.1007/s00284-016-1134-5]
  99. Teh AHT, Lee SM, Dykes GA (2017) Identification of potential Campylobacter jejuni genes involved in biofilm formation by EZ-Tn5 Transposome mutagenesis. BMC Res Notes 10:182. https://doi.org/10.1186/s13104-017-2504-1 [DOI: 10.1186/s13104-017-2504-1]
  100. Teh AHT, Lee SM, Dykes GA (2019) Association of some Campylobacter jejuni with Pseudomonas aeruginosa biofilms increases attachment under conditions mimicking those in the environment. PLoS ONE 14:e0215275. https://doi.org/10.1371/journal.pone.0215275 [DOI: 10.1371/journal.pone.0215275]
  101. Teh KH, Flint S, French N (2010) Biofilm formation by Campylobacter jejuni in controlled mixed-microbial populations. Int J Food Microbiol 143:118–124. https://doi.org/10.1016/j.ijfoodmicro.2010.07.037 [DOI: 10.1016/j.ijfoodmicro.2010.07.037]
  102. Theoret JR, Cooper KK, Zekarias B, Roland KL, Law BF, Curtiss R, Joens LA (2012) The Campylobacter jejuni Dps homologue is important for in vitro biofilm formation and cecal colonization of poultry and may serve as a protective antigen for vaccination. Clin Vaccine Immunol 19:1426–1431. https://doi.org/10.1128/CVI.00151-12 [DOI: 10.1128/CVI.00151-12]
  103. Tram G, Day CJ, Korolik V (2020a) Bridging the Gap: A Role for Campylobacter jejuni Biofilms. Microorganisms 8(3):452. https://doi.org/10.3390/microorganisms8030452
  104. Tram G, Klare WP, Cain JA, Mourad B, Cordwell SJ, Day CJ, Korolik V (2020b) Assigning a role for chemosensory signal transduction in Campylobacter jejuni biofilms using a combined omics approach. Sci Rep 10:6829. https://doi.org/10.1038/s41598-020-63569-5
  105. Turonova H, Briandet R, Rodrigues R, Hernould M, Hayek N, Stintzi A, Pazlarova J, Tresse O (2015) Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC11168 and 81–176 strains under microaerobic and oxygen-enriched conditions. Front Microbiol 6:709. https://doi.org/10.3389/fmicb.2015.00709 [DOI: 10.3389/fmicb.2015.00709]
  106. Wagle BR, Upadhyay A, Upadhyaya I, Shrestha S, Arsi K, Liyanage R, Venkitanarayanan K, Donoghue DJ, Donoghue AM (2019) Trans-cinnamaldehyde, eugenol and carvacrol reduce Campylobacter jejuni biofilms and modulate expression of select genes and proteins. Front Microbiol 10:1837. https://doi.org/10.3389/fmicb.2019.01837 [DOI: 10.3389/fmicb.2019.01837]
  107. Whelan MVX, Ardill L, Koide K, Nakajima C, Suzuki Y, Simpson JC, Cróinín TÓ (2019) Acquisition of fluoroquinolone resistance leads to increased biofilm formation and pathogenicity in Campylobacter jejuni. Sci Rep 9:18216. https://doi.org/10.1038/s41598-019-54620-1 [DOI: 10.1038/s41598-019-54620-1]
  108. Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MT, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002) LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148:909–922. https://doi.org/10.1099/00221287-148-4-909 [DOI: 10.1099/00221287-148-4-909]
  109. Zhang T, Dong J, Cheng Y, Lu Q, Luo Q, Wen G, Liu G, Shao H (2017) Genotypic diversity, antimicrobial resistance and biofilm-forming abilities of Campylobacter isolated from chicken in Central China. Gut Pathog 9:62. https://doi.org/10.1186/s13099-017-0209-6 [DOI: 10.1186/s13099-017-0209-6]
  110. Zhong X, Wu Q, Zhang J, Ma Z, Wang J, Nie X, Ding Y, Xue L, Chen M, Wu S, Wei X, Zhang Y (2020) Campylobacter jejuni biofilm formation under aerobic conditions and inhibition by ZnO nanoparticles. Front Microbiol 11:207. https://doi.org/10.3389/fmicb.2020.00207 [DOI: 10.3389/fmicb.2020.00207]

MeSH Term

Bacterial Proteins
Biofilms
Campylobacter
Quorum Sensing
Virulence

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0formationCjejunibiofilmgeneswellsensingEventhoughCampylobacterwithinconditionsbiofilmsstructureoxygenexternalfactorsviaexpressionmotilitystresssummarizedquorummechanismsstrainsluxSBiofilmQuorumsppknownfastidiousorganismscansurvivenaturalenvironmentOnemechanismwithstandunfavourablemulticellularcomposeddifferentbacterialmicrobialspeciesembeddedextracellularmatrixHighlevelslowsubstrateconcentrationspresenceDNAstimulatetriggerinternaladaptationprocessesegregulatingencodingproteinsrequiredsurfaceresponseantimicrobialresistanceKnownimpactingwillreviewvirulenceoftenregulatedcelldensitydependingmannermediatedsmallsignallingmoleculestermedautoinducersbacteriaunderstoodknowledgerolestillscarceLuxSenzymeinvolvedgenerationautoinducer-2presentautoinducerreceptorsidentifiedfarPhenotypeslackingfunctionallikereducedgrowthtoleranceadhesioninvasioncolonizationalsochapterHoweverphenotypeshighlyvariabledistinctdependcultureappliedMolecularMechanismsFormationSensingAutoinducerEnvironmentalmutants

Similar Articles

Cited By