Insights into the diversification of subclade IVa bHLH transcription factors in Fabaceae.

Hayato Suzuki, Hikaru Seki, Toshiya Muranaka
Author Information
  1. Hayato Suzuki: Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  2. Hikaru Seki: Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  3. Toshiya Muranaka: Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. muranaka@bio.eng.osaka-u.ac.jp. ORCID

Abstract

BACKGROUND: Fabaceae plants appear to contain larger numbers of subclade IVa basic-helix-loop-helix (bHLH) transcription factors than other plant families, and some members of this subclade have been identified as saponin biosynthesis regulators. We aimed to systematically elucidate the diversification of this subclade and obtain insights into the evolutionary history of saponin biosynthesis regulation in Fabaceae.
RESULTS: In this study, we collected sequences of subclade IVa bHLH proteins from 40 species, including fabids and other plants, and found greater numbers of subclade IVa bHLHs in Fabaceae. We confirmed conservation of the bHLH domain, C-terminal ACT-like domain, and exon-intron organisation among almost all subclade IVa members in model legumes, supporting the results of our classification. Phylogenetic tree-based classification of subclade IVa revealed the presence of three different groups. Interestingly, most Fabaceae subclade IVa bHLHs fell into group 1, which contained all legume saponin biosynthesis regulators identified to date. These observations support the co-occurrence and Fabaceae-specific diversification of saponin biosynthesis regulators. Comparing the expression of orthologous genes in Glycine max, Medicago truncatula, and Lotus japonicus, orthologues of MtTSAR1 (the first identified soyasaponin biosynthesis regulatory transcription factor) were not expressed in the same tissues, suggesting that group 1 members have gained different expression patterns and contributions to saponin biosynthesis during their duplication and divergence. On the other hand, groups 2 and 3 possessed fewer members, and their phylogenetic relationships and expression patterns were highly conserved, indicating that their activities may be conserved across Fabaceae.
CONCLUSIONS: This study suggests subdivision and diversification of subclade IVa bHLHs in Fabaceae plants. The results will be useful for candidate selection of unidentified saponin biosynthesis regulators. Furthermore, the functions of groups 2 and 3 members are interesting targets for clarifying the evolution of subclade IVa bHLH transcription factors in Fabaceae.

Keywords

References

  1. Plant Biotechnol J. 2009 Feb;7(2):172-82 [PMID: 19055609]
  2. Plant Physiol. 2016 Jan;170(1):194-210 [PMID: 26589673]
  3. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  4. Nucleic Acids Res. 2016 Jan 4;44(D1):D1181-8 [PMID: 26546515]
  5. Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):E2091-7 [PMID: 22778424]
  6. Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8130-5 [PMID: 26080427]
  7. J Exp Bot. 2017 Mar 1;68(6):1333-1347 [PMID: 27927998]
  8. Plant Cell Physiol. 2018 Feb 1;59(2):366-375 [PMID: 29216402]
  9. Mol Biol Evol. 2003 May;20(5):735-47 [PMID: 12679534]
  10. Plant J. 2016 Oct;88(1):3-12 [PMID: 27342401]
  11. Plant J. 2017 Jan;89(2):181-194 [PMID: 27775193]
  12. Mol Biol Evol. 2010 Apr;27(4):862-74 [PMID: 19942615]
  13. Plant Cell. 2011 Nov;23(11):4112-23 [PMID: 22128119]
  14. Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432 [PMID: 30357350]
  15. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  16. J Biol Chem. 2006 Sep 29;281(39):28964-74 [PMID: 16867983]
  17. Nucleic Acids Res. 2020 Jan 8;48(D1):D1104-D1113 [PMID: 31701126]
  18. Plant Cell Physiol. 2015 Aug;56(8):1463-71 [PMID: 25951908]
  19. Mol Syst Biol. 2011 Oct 11;7:539 [PMID: 21988835]
  20. Plant Cell Physiol. 2016 Dec;57(12):2564-2575 [PMID: 27694525]
  21. Nature. 2010 Jan 14;463(7278):178-83 [PMID: 20075913]
  22. Int J Genomics. 2015;2015:603182 [PMID: 25763382]
  23. Plant Cell Physiol. 2018 Apr 1;59(4):778-791 [PMID: 29648666]
  24. J Chem Ecol. 2002 Mar;28(3):587-99 [PMID: 11944835]
  25. Annu Rev Plant Biol. 2014;65:225-57 [PMID: 24498976]
  26. J Nat Prod. 2019 Dec 27;82(12):3311-3320 [PMID: 31774676]
  27. Sci Rep. 2016 Dec 23;6:39447 [PMID: 28008948]
  28. Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 [PMID: 7584402]
  29. J Agric Food Chem. 2005 Mar 23;53(6):1914-20 [PMID: 15769113]
  30. Plant Sci. 2016 Sep;250:188-197 [PMID: 27457995]
  31. Plant Cell Physiol. 2019 Nov 1;60(11):2496-2509 [PMID: 31418782]
  32. Nat Commun. 2019 Mar 14;10(1):1216 [PMID: 30872580]
  33. Plant Cell Rep. 2017 Mar;36(3):437-445 [PMID: 28008473]
  34. BMC Bioinformatics. 2009 Dec 22;10:441 [PMID: 20028527]
  35. J Nat Med. 2017 Jan;71(1):50-58 [PMID: 27491744]
  36. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  37. Nature. 2017 Feb 16;542(7641):307-312 [PMID: 28178233]
  38. Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86 [PMID: 22110026]
  39. J Agric Food Chem. 2006 Mar 22;54(6):2035-44 [PMID: 16536572]
  40. New Phytol. 2017 Aug;215(3):1115-1131 [PMID: 28649699]
  41. BMC Genomics. 2015 Jan 22;16:9 [PMID: 25612924]
  42. New Phytol. 2011 Jan;189(1):335-46 [PMID: 20868395]
  43. PLoS One. 2018 Apr 16;13(4):e0195974 [PMID: 29659634]
  44. Plant Cell. 2020 Jun;32(6):2020-2042 [PMID: 32303662]

Grants

  1. JP19J10245/Japan Society for the Promotion of Science
  2. JP20H02913/Japan Society for the Promotion of Science
  3. JP19H02921/Japan Society for the Promotion of Science

MeSH Term

Basic Helix-Loop-Helix Transcription Factors
Evolution, Molecular
Fabaceae
Genetic Variation
Genotype
Species Specificity

Chemicals

Basic Helix-Loop-Helix Transcription Factors

Word Cloud

Created with Highcharts 10.0.0subcladeFabaceaeIVasaponinbiosynthesisbHLHmemberstranscriptionregulatorsdiversificationplantsfactorsidentifiedbHLHsgroupsexpressionnumbersregulationstudydomainresultsclassificationdifferentgroup1patterns23conservedBACKGROUND:appearcontainlargerbasic-helix-loop-helixplantfamiliesaimedsystematicallyelucidateobtaininsightsevolutionaryhistoryRESULTS:collectedsequencesproteins40speciesincludingfabidsfoundgreaterconfirmedconservationC-terminalACT-likeexon-intronorganisationamongalmostmodellegumessupportingPhylogenetictree-basedrevealedpresencethreeInterestinglyfellcontainedlegumedateobservationssupportco-occurrenceFabaceae-specificComparingorthologousgenesGlycinemaxMedicagotruncatulaLotusjaponicusorthologuesMtTSAR1firstsoyasaponinregulatoryfactorexpressedtissuessuggestinggainedcontributionsduplicationdivergencehandpossessedfewerphylogeneticrelationshipshighlyindicatingactivitiesmayacrossCONCLUSIONS:suggestssubdivisionwillusefulcandidateselectionunidentifiedFurthermorefunctionsinterestingtargetsclarifyingevolutionInsightsClassificationTranscriptionalTriterpene

Similar Articles

Cited By (1)