Deciphering the state of immune silence in fatal COVID-19 patients.

Pierre Bost, Francesco De Sanctis, Stefania Canè, Stefano Ugel, Katia Donadello, Monica Castellucci, David Eyal, Alessandra Fiore, Cristina Anselmi, Roza Maria Barouni, Rosalinda Trovato, Simone Caligola, Alessia Lamolinara, Manuela Iezzi, Federica Facciotti, Annarita Mazzariol, Davide Gibellini, Pasquale De Nardo, Evelina Tacconelli, Leonardo Gottin, Enrico Polati, Benno Schwikowski, Ido Amit, Vincenzo Bronte
Author Information
  1. Pierre Bost: Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
  2. Francesco De Sanctis: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
  3. Stefania Canè: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
  4. Stefano Ugel: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy. ORCID
  5. Katia Donadello: Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy.
  6. Monica Castellucci: The Center for Technological Platforms, University of Verona, Verona, Italy.
  7. David Eyal: Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
  8. Alessandra Fiore: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
  9. Cristina Anselmi: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
  10. Roza Maria Barouni: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
  11. Rosalinda Trovato: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy.
  12. Simone Caligola: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy. ORCID
  13. Alessia Lamolinara: CAST- Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy. ORCID
  14. Manuela Iezzi: CAST- Center for Advanced Studies and Technology, Department of Neurosciences, Imaging and Clinical Sciences, University of G. D'Annunzio of Chieti-Pescara, Chieti, Italy. ORCID
  15. Federica Facciotti: Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy. ORCID
  16. Annarita Mazzariol: Microbiology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.
  17. Davide Gibellini: Microbiology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.
  18. Pasquale De Nardo: Division of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.
  19. Evelina Tacconelli: Division of Infectious Diseases, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy.
  20. Leonardo Gottin: Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy.
  21. Enrico Polati: Intensive Care Unit, Department of Surgery, Dentistry, Maternity and Infant, University and Hospital Trust of Verona, Verona, Italy.
  22. Benno Schwikowski: Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris, France. ORCID
  23. Ido Amit: Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. ido.amit@weizmann.ac.il. ORCID
  24. Vincenzo Bronte: Immunology Section, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy. vincenzo.bronte@univr.it. ORCID

Abstract

Since the beginning of the SARS-CoV-2 pandemic, COVID-19 appeared as a unique disease with unconventional tissue and systemic immune features. Here we show a COVID-19 immune signature associated with severity by integrating single-cell RNA-seq analysis from blood samples and broncho-alveolar lavage fluids with clinical, immunological and functional ex vivo data. This signature is characterized by lung accumulation of naïve lymphoid cells associated with a systemic expansion and activation of myeloid cells. Myeloid-driven immune suppression is a hallmark of COVID-19 evolution, highlighting arginase-1 expression with immune regulatory features of monocytes. Monocyte-dependent and neutrophil-dependent immune suppression loss is associated with fatal clinical outcome in severe patients. Additionally, our analysis shows a lung CXCR6 effector memory T cell subset is associated with better prognosis in patients with severe COVID-19. In summary, COVID-19-induced myeloid dysregulation and lymphoid impairment establish a condition of 'immune silence' in patients with critical COVID-19.

References

  1. Sci Rep. 2018 Nov 23;8(1):17296 [PMID: 30470767]
  2. Nat Med. 2020 Mar;26(3):333-340 [PMID: 32066974]
  3. Nat Med. 2020 Jul;26(7):1033-1036 [PMID: 32398876]
  4. Cell. 2018 Aug 9;174(4):968-981.e15 [PMID: 30078711]
  5. Immunity. 2020 Jun 16;52(6):910-941 [PMID: 32505227]
  6. Neuron. 2016 Oct 19;92(2):342-357 [PMID: 27764670]
  7. Science. 2020 Oct 23;370(6515): [PMID: 32972996]
  8. J Exp Med. 2010 Jul 5;207(7):1453-64 [PMID: 20530204]
  9. JAMA Intern Med. 2020 Jul 1;180(7):934-943 [PMID: 32167524]
  10. J Exp Med. 2019 Sep 2;216(9):2150-2169 [PMID: 31239386]
  11. Nat Commun. 2018 Dec 5;9(1):5193 [PMID: 30518925]
  12. Crit Care. 2020 May 6;24(1):198 [PMID: 32375845]
  13. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  14. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  15. Lancet. 2020 May 9;395(10235):1517-1520 [PMID: 32311318]
  16. Nat Rev Immunol. 2013 Dec;13(12):862-74 [PMID: 24232462]
  17. Front Med (Lausanne). 2020 Aug 05;7:420 [PMID: 32850912]
  18. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  19. N Engl J Med. 2020 Oct 15;383(16):1522-1534 [PMID: 32558485]
  20. Cell Host Microbe. 2016 Feb 10;19(2):181-93 [PMID: 26867177]
  21. J Clin Invest. 2020 Dec 1;130(12):6409-6416 [PMID: 32809969]
  22. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  23. JAMA Intern Med. 2020 Aug 1;180(8):1081-1089 [PMID: 32396163]
  24. Nat Commun. 2019 Jul 19;10(1):3222 [PMID: 31324783]
  25. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  26. Intensive Care Med. 2010 Nov;36(11):1859-66 [PMID: 20652682]
  27. Nat Rev Dis Primers. 2017 Jan 19;3:16096 [PMID: 28102226]
  28. J Immunother Cancer. 2019 Sep 18;7(1):255 [PMID: 31533831]
  29. JAMA Intern Med. 2020 Sep 1;180(9):1152-1154 [PMID: 32602883]
  30. Curr Protoc Microbiol. 2020 Jun;57(1):e100 [PMID: 32302069]
  31. Science. 2020 May 1;368(6490):473-474 [PMID: 32303591]
  32. Nat Rev Immunol. 2020 Sep;20(9):515-516 [PMID: 32728221]
  33. Adv Virus Res. 2006;66:193-292 [PMID: 16877062]
  34. JAMA. 2020 Jun 23;323(24):2518-2520 [PMID: 32437497]
  35. PLoS One. 2012;7(11):e48939 [PMID: 23152825]
  36. Crit Care Med. 2017 Apr;45(4):e426-e432 [PMID: 27635771]
  37. Nat Biotechnol. 2018 Jan;36(1):70-80 [PMID: 29227469]
  38. Cell Death Differ. 2020 Nov;27(11):3196-3207 [PMID: 32514047]
  39. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  40. Cell. 2020 Jun 25;181(7):1475-1488.e12 [PMID: 32479746]
  41. Curr Protoc Immunol. 2019 Feb;124(1):e61 [PMID: 30303619]
  42. Cell. 2020 Aug 6;182(3):734-743.e5 [PMID: 32643603]
  43. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  44. Int J Infect Dis. 2014 Dec;29:301-6 [PMID: 25303830]
  45. Sci Rep. 2019 Mar 26;9(1):5233 [PMID: 30914743]
  46. JAMA. 2011 Dec 21;306(23):2594-605 [PMID: 22187279]
  47. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  48. Cell. 2020 Sep 17;182(6):1401-1418.e18 [PMID: 32810439]
  49. Arch Pathol Lab Med. 2004 Feb;128(2):195-204 [PMID: 14736283]
  50. JCI Insight. 2020 Jun 4;5(11): [PMID: 32329756]
  51. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  52. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  53. N Engl J Med. 2020 Nov 5;383(19):1813-1826 [PMID: 32445440]
  54. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  55. PLoS One. 2012;7(12):e51340 [PMID: 23236477]
  56. Nature. 2020 Aug;584(7821):425-429 [PMID: 32604404]
  57. Crit Care. 2020 Aug 28;24(1):530 [PMID: 32859241]
  58. J Exp Med. 2019 Dec 2;216(12):2748-2762 [PMID: 31558615]
  59. Int J Infect Dis. 2020 Jun;95:421-428 [PMID: 32289565]
  60. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]

Grants

  1. /Howard Hughes Medical Institute

MeSH Term

Aged
Aged, 80 and over
CD8-Positive T-Lymphocytes
COVID-19
Case-Control Studies
Cytokines
Female
Humans
Male
Middle Aged
Monocytes
Myeloid Cells
Neutrophils
SARS-CoV-2
T-Lymphocytes

Chemicals

Cytokines