Disease Modeling and Disease Gene Discovery in Cardiomyopathies: A Molecular Study of Induced Pluripotent Stem Cell Generated Cardiomyocytes.

Satish Kumar, Joanne E Curran, Kashish Kumar, Erica DeLeon, Ana C Leandro, Juan Peralta, Sarah Williams-Blangero, John Blangero
Author Information
  1. Satish Kumar: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA. ORCID
  2. Joanne E Curran: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA. ORCID
  3. Kashish Kumar: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA.
  4. Erica DeLeon: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA.
  5. Ana C Leandro: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA. ORCID
  6. Juan Peralta: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA.
  7. Sarah Williams-Blangero: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX 78504, USA.
  8. John Blangero: Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA.

Abstract

The in vitro modeling of cardiac development and cardiomyopathies in human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) provides opportunities to aid the discovery of genetic, molecular, and developmental changes that are causal to, or influence, cardiomyopathies and related diseases. To better understand the functional and disease modeling potential of iPSC-differentiated CMs and to provide a proof of principle for large, epidemiological-scale disease gene discovery approaches into cardiomyopathies, well-characterized CMs, generated from validated iPSCs of 12 individuals who belong to four sibships, and one of whom reported a major adverse cardiac event (MACE), were analyzed by genome-wide mRNA sequencing. The generated CMs expressed CM-specific genes and were highly concordant in their total expressed transcriptome across the 12 samples (correlation coefficient at 95% CI =0.92 ± 0.02). The functional annotation and enrichment analysis of the 2116 genes that were significantly upregulated in CMs suggest that generated CMs have a transcriptomic and functional profile of immature atrial-like CMs; however, the CMs-upregulated transcriptome also showed high overlap and significant enrichment in primary cardiomyocyte (-value = 4.36 × 10), primary heart tissue (-value = 1.37 × 10) and cardiomyopathy (-value = 1.13 × 10) associated gene sets. Modeling the effect of MACE in the generated CMs-upregulated transcriptome identified gene expression phenotypes consistent with the predisposition of the MACE-affected sibship to arrhythmia, prothrombotic, and atherosclerosis risk.

Keywords

References

  1. J Biol Chem. 2010 Apr 9;285(15):11129-42 [PMID: 20129917]
  2. Genes Dev. 2007 May 1;21(9):1098-112 [PMID: 17473172]
  3. PLoS Comput Biol. 2017 Jun 16;13(6):e1005587 [PMID: 28622331]
  4. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  5. Cell Rep. 2015 Nov 24;13(8):1705-16 [PMID: 26586429]
  6. Cell. 2018 Mar 22;173(1):104-116.e12 [PMID: 29502971]
  7. Circulation. 2011 Nov 15;124(20):2264-74 [PMID: 22083148]
  8. Methods. 2015 Mar;74:83-9 [PMID: 25484339]
  9. Nat Rev Cardiol. 2020 Jun;17(6):341-359 [PMID: 32015528]
  10. Arq Bras Cardiol. 2019 Sep 02;113(2):274-281 [PMID: 31483024]
  11. J Physiol. 2017 Jun 15;595(12):4019-4026 [PMID: 28217939]
  12. Circulation. 1961 Aug;24:458-70 [PMID: 13721272]
  13. Pediatr Res. 2001 Nov;50(5):569-74 [PMID: 11641449]
  14. Heart Rhythm. 2010 Sep;7(9):1246-52 [PMID: 20638934]
  15. Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):40-47 [PMID: 28576298]
  16. Int J Cardiol. 2017 Aug 15;241:379-386 [PMID: 28377185]
  17. N Engl J Med. 2006 Jul 13;355(2):138-47 [PMID: 16837677]
  18. BMC Bioinformatics. 2013 Apr 15;14:128 [PMID: 23586463]
  19. Proc Natl Acad Sci U S A. 2010 May 25;107(21):9753-8 [PMID: 20457925]
  20. Circulation. 2006 Apr 11;113(14):1807-16 [PMID: 16567565]
  21. BMC Dev Biol. 2010 Sep 15;10:98 [PMID: 20843318]
  22. Circ Res. 2017 Sep 15;121(7):784-802 [PMID: 28912183]
  23. Cardiovasc Res. 2016 Mar 1;109(3):431-41 [PMID: 26714926]
  24. Am J Physiol Cell Physiol. 2010 Dec;299(6):C1234-49 [PMID: 20844252]
  25. Circ Res. 2020 Apr 10;126(8):1086-1106 [PMID: 32271675]
  26. JAMA. 2006 Oct 18;296(15):1867-76 [PMID: 17047217]
  27. Eur Heart J. 2013 May;34(20):1517-25 [PMID: 23264583]
  28. J Mol Cell Cardiol. 2020 Jan;138:1-11 [PMID: 31655038]
  29. J Hum Genet. 2009 May;54(5):277-83 [PMID: 19343045]
  30. Cardiovasc Res. 2012 Jun 1;94(3):439-49 [PMID: 22419669]
  31. Nat Rev Cardiol. 2013 Sep;10(9):531-47 [PMID: 23900355]
  32. Nucleic Acids Res. 2020 Jan 8;48(D1):D835-D844 [PMID: 31777943]
  33. Circ Arrhythm Electrophysiol. 2012 Dec;5(6):1053-5 [PMID: 23250549]
  34. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7 [PMID: 15075390]
  35. Circ Res. 2007 Mar 30;100(6):850-5 [PMID: 17332425]
  36. Cardiovasc Res. 2017 Mar 1;113(3):259-275 [PMID: 28069669]
  37. J Cell Mol Med. 2015 Aug;19(8):1825-35 [PMID: 25824297]
  38. Eur Heart J. 2001 Sep;22(18):1741-7 [PMID: 11511124]
  39. Bioinformatics. 2014 Feb 15;30(4):523-30 [PMID: 24336805]
  40. Stem Cells. 2014 Jul;32(7):1774-88 [PMID: 24648383]
  41. Circ Res. 2014 Jan 31;114(3):511-23 [PMID: 24481842]
  42. N Engl J Med. 2011 Apr 28;364(17):1643-56 [PMID: 21524215]
  43. Physiol Genomics. 2019 Aug 1;51(8):323-332 [PMID: 31172864]
  44. Vascul Pharmacol. 2020 Oct - Nov;133-134:106781 [PMID: 32827678]
  45. Development. 2003 Dec;130(24):5953-64 [PMID: 14573514]
  46. Pharmacol Ther. 2018 Mar;183:127-136 [PMID: 28986101]
  47. J Biol Chem. 1994 Jun 17;269(24):16961-70 [PMID: 8207020]
  48. J Biol Methods. 2020 Jan 08;7(1):e124 [PMID: 31976351]
  49. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  50. Genes Dev. 2015 Oct 1;29(19):1981-91 [PMID: 26443844]
  51. Circ Res. 2013 Aug 30;113(6):660-75 [PMID: 23989711]
  52. Circ Res. 2018 Aug 17;123(5):512-514 [PMID: 30355143]
  53. Circ Res. 2017 Sep 15;121(7):819-837 [PMID: 28912185]
  54. Circ Res. 2015 Jun 19;117(1):80-8 [PMID: 26089365]
  55. Front Cell Dev Biol. 2017 May 05;5:50 [PMID: 28529939]
  56. Cell Stem Cell. 2017 Aug 3;21(2):179-194.e4 [PMID: 28777944]
  57. J Physiol. 2020 Jul;598(14):2941-2956 [PMID: 30571853]
  58. Arterioscler Thromb Vasc Biol. 2007 Dec;27(12):2763-8 [PMID: 17901373]
  59. Eur Heart J. 2010 Oct;31(19):2369-429 [PMID: 20802247]
  60. Cell Stem Cell. 2017 Aug 3;21(2):151-152 [PMID: 28777937]
  61. FASEB J. 2015 Apr;29(4):1329-43 [PMID: 25491312]
  62. J Am Coll Cardiol. 2016 Oct 25;68(17):1881-1894 [PMID: 27765191]
  63. Stem Cells. 2008 Jul;26(7):1831-40 [PMID: 18436862]
  64. Trends Cardiovasc Med. 2003 Aug;13(6):221-6 [PMID: 12922017]
  65. Development. 2007 Feb;134(4):747-55 [PMID: 17259303]
  66. Dis Model Mech. 2017 Sep 1;10(9):1039-1059 [PMID: 28883014]
  67. J Cardiovasc Dev Dis. 2017 Oct 11;4(4): [PMID: 29367545]
  68. Hum Mol Genet. 2006 Jul 15;15(14):2185-91 [PMID: 16772329]
  69. Sci Transl Med. 2016 Aug 31;8(354):354ra115 [PMID: 27582060]
  70. Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9181-6 [PMID: 24927531]
  71. Rev Esp Cardiol. 2002 Jul;55(7):725-32 [PMID: 12113700]
  72. J Vis Exp. 2015 Mar 18;(97): [PMID: 25867738]
  73. Nat Rev Mol Cell Biol. 2011 Jun;12(6):385-92 [PMID: 21527953]
  74. Circ Arrhythm Electrophysiol. 2012 Dec;5(6):1168-75 [PMID: 23095228]
  75. Gene Ther. 2014 May;21(5):496-506 [PMID: 24646609]
  76. Stem Cell Res. 2017 Aug;23:77-86 [PMID: 28711757]
  77. Circ Cardiovasc Genet. 2011 Jun;4(3):269-79 [PMID: 21511879]
  78. Proc Natl Acad Sci U S A. 2007 May 8;104(19):7975-80 [PMID: 17468400]
  79. J Biol Chem. 2014 Sep 26;289(39):27327-27341 [PMID: 25122764]
  80. Methods Mol Biol. 2018;1706:17-38 [PMID: 29423791]
  81. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5157-61 [PMID: 8506363]
  82. Circulation. 2002 Nov 26;106(22):2854-8 [PMID: 12451014]
  83. Stem Cells Int. 2016;2016:2349261 [PMID: 27375745]
  84. Circ Genom Precis Med. 2018 Jan;11(1):e000043 [PMID: 29874173]
  85. Eur Heart J. 2016 Jun 14;37(23):1850-8 [PMID: 26792875]
  86. Stem Cells. 2009 Sep;27(9):2163-74 [PMID: 19658189]

Grants

  1. P01 HL045522/NIH HHS
  2. 510000000/Valley Baptist Legacy Foundation
  3. R01 HL140681/NIH HHS
  4. 1C06RR020547/NIH HHS

MeSH Term

Cardiomyopathies
Cell Differentiation
Cell Lineage
Cryopreservation
Gene Expression Profiling
Gene Expression Regulation
Genetic Association Studies
Humans
Induced Pluripotent Stem Cells
Lymphocytes
Myocytes, Cardiac
Phenotype
RNA, Messenger
Risk
Transcriptome

Chemicals

RNA, Messenger

Word Cloud

Similar Articles

Cited By