Genome-Wide Identification of Genes Involved in Acid Stress Resistance of Derby.

Dan Gu, Han Xue, Xiaohui Yuan, Jinyan Yu, Xiaomeng Xu, Yu Huang, Mingzhu Li, Xianyue Zhai, Zhiming Pan, Yunzeng Zhang, Xinan Jiao
Author Information
  1. Dan Gu: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  2. Han Xue: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  3. Xiaohui Yuan: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  4. Jinyan Yu: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  5. Xiaomeng Xu: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  6. Yu Huang: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  7. Mingzhu Li: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  8. Xianyue Zhai: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  9. Zhiming Pan: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  10. Yunzeng Zhang: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  11. Xinan Jiao: Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. ORCID

Abstract

Resistance to and survival under acidic conditions are critical for to infect the host. As one of the most prevalent serotypes identified in pigs and humans, how . Derby overcomes acid stress remains unclear. Here, we de novo sequenced the genome of a representative Derby strain 14T from our Derby strain stock and identified its acid resistance-associated genes using Tn-seq analysis. A total of 35 genes, including those belonging to two-component systems (TCS) (), the CRISPR-Cas system (), and other systems, were identified as essential for 14T to survive under acid stress. The results demonstrated that the growth curve and survival ability of Δ and Δ were decreased under acid stress, and the adhesion and invasion abilities to the mouse colon cancer epithelial cells (MC38) of Δ were also decreased compared with the wild type strain, suggesting that the TCS CpxAR plays an essential role in the acid resistance and virulence of . Derby. Also, CasC and CasE were found to be responsible for acid resistance in . Derby. Our results indicate that acid stress induces multiple genes' expression to mediate the acid resistance of . Derby and enhance its pathogenesis during an infection.

Keywords

References

  1. Environ Microbiol. 2018 Sep;20(9):3363-3377 [PMID: 30062827]
  2. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  3. Vet Microbiol. 2019 Apr;231:147-153 [PMID: 30955802]
  4. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  5. Appl Environ Microbiol. 2015 Dec;81(23):8054-65 [PMID: 26386064]
  6. Mol Microbiol. 2016 Sep;101(6):1024-38 [PMID: 27282333]
  7. Br Poult Sci. 2018 Jun;59(3):330-339 [PMID: 29432032]
  8. BMC Genomics. 2013 May 31;14:365 [PMID: 23725633]
  9. EFSA J. 2019 Dec 11;17(12):e05926 [PMID: 32626211]
  10. Food Microbiol. 2018 May;71:46-54 [PMID: 29366468]
  11. Pathogens. 2020 Jan 10;9(1): [PMID: 31936769]
  12. Pathogens. 2019 Apr 04;8(2): [PMID: 30987404]
  13. Nature. 2002 Oct 17;419(6908):715-8 [PMID: 12384697]
  14. Microbiology (Reading). 2011 Dec;157(Pt 12):3268-3281 [PMID: 22016569]
  15. mBio. 2015 May 12;6(3):e00306-15 [PMID: 25968644]
  16. PLoS Pathog. 2016 Jun 02;12(6):e1005645 [PMID: 27253371]
  17. Infect Immun. 2013 Jan;81(1):154-65 [PMID: 23090959]
  18. PLoS Comput Biol. 2015 Oct 08;11(10):e1004401 [PMID: 26447887]
  19. Gut. 1987 Jan;28(1):96-107 [PMID: 3546004]
  20. Future Microbiol. 2019 Apr;14:533-552 [PMID: 31066586]
  21. J Mol Microbiol Biotechnol. 2003;5(1):17-28 [PMID: 12673058]
  22. J Bacteriol. 2002 Mar;184(6):1630-9 [PMID: 11872714]
  23. Antimicrob Agents Chemother. 1996 Jun;40(6):1422-5 [PMID: 8726013]
  24. Nat Commun. 2020 Mar 20;11(1):1496 [PMID: 32198415]
  25. PLoS Comput Biol. 2017 Jun 8;13(6):e1005595 [PMID: 28594827]
  26. Infect Immun. 1996 Jul;64(7):2765-73 [PMID: 8698506]
  27. Front Microbiol. 2015 Aug 06;6:807 [PMID: 26300871]
  28. PLoS Genet. 2014 Mar 06;10(3):e1004215 [PMID: 24603618]
  29. Infect Immun. 2003 Oct;71(10):5498-504 [PMID: 14500467]
  30. Microb Pathog. 2019 Nov;136:103701 [PMID: 31472260]
  31. Curr Opin Microbiol. 2019 Feb;47:45-51 [PMID: 30529007]
  32. Infect Immun. 2018 Jun 21;86(7): [PMID: 29685984]
  33. Nature. 2004 Feb 26;427(6977):803-7 [PMID: 14985752]
  34. Front Microbiol. 2018 May 17;9:891 [PMID: 29867804]
  35. J Anim Sci. 2019 Sep 3;97(9):3741-3757 [PMID: 31250899]
  36. Food Microbiol. 2021 May;95:103716 [PMID: 33397629]
  37. Infect Immun. 2010 Sep;78(9):3898-904 [PMID: 20605985]
  38. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W181-4 [PMID: 18411202]
  39. BMC Microbiol. 2020 Jul 28;20(1):226 [PMID: 32723297]
  40. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10079-83 [PMID: 1438196]
  41. Front Microbiol. 2020 May 14;11:889 [PMID: 32477304]
  42. mBio. 2017 Oct 3;8(5): [PMID: 28974620]
  43. Appl Environ Microbiol. 2015 Sep 1;81(17):5675-82 [PMID: 26070677]
  44. J Food Prot. 2003 Jul;66(7):1292-303 [PMID: 12870767]
  45. Front Microbiol. 2018 Jan 15;8:2689 [PMID: 29379483]
  46. Front Microbiol. 2020 May 21;11:1026 [PMID: 32528444]
  47. J Bacteriol. 2011 Mar;193(5):1222-8 [PMID: 21193607]
  48. J Bacteriol. 1998 May;180(9):2409-17 [PMID: 9573193]
  49. Gerontology. 1977;23(4):309-21 [PMID: 838286]
  50. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  51. Appl Environ Microbiol. 2020 Aug 18;86(17): [PMID: 32591375]
  52. Mol Microbiol. 2009 Mar;71(5):1228-38 [PMID: 19170886]
  53. Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 [PMID: 26582926]

MeSH Term

Acids
Adaptation, Physiological
Animals
Bacterial Proteins
Gene Expression Regulation, Bacterial
Genome, Bacterial
Genome-Wide Association Study
Humans
Salmonella
Salmonella Infections
Stress, Physiological
Swine

Chemicals

Acids
Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0acidDerbystressresistanceidentifiedstrainΔResistancesurvival14TgenesTn-seqsystemsTCSessentialresultsdecreasedCpxARacidicconditionscriticalinfecthostoneprevalentserotypespigshumansovercomesremainsuncleardenovosequencedgenomerepresentativestockresistance-associatedusinganalysistotal35includingbelongingtwo-componentCRISPR-CassystemsurvivedemonstratedgrowthcurveabilityadhesioninvasionabilitiesmousecoloncancerepithelialcellsMC38alsocomparedwildtypesuggestingplaysrolevirulenceAlsoCasCCasEfoundresponsibleindicateinducesmultiplegenes'expressionmediateenhancepathogenesisinfectionGenome-WideIdentificationGenesInvolvedAcidStressCasC/CasESalmonella

Similar Articles

Cited By