Effects of Copper Nanoparticles on mRNA and Small RNA Expression in Human Hepatocellular Carcinoma (HepG2) Cells.

Sheau-Fung Thai, Carlton P Jones, Brian L Robinette, Hongzu Ren, Beena Vallant, Anna Fisher, Kirk T Kitchin
Author Information
  1. Sheau-Fung Thai: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  2. Carlton P Jones: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  3. Brian L Robinette: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  4. Hongzu Ren: Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  5. Beena Vallant: Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  6. Anna Fisher: Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA.
  7. Kirk T Kitchin: Retired from EPA, Durham NC 27709, USA.

Abstract

With the advancement of nanotechnology, nanoparticles are widely used in many different industrial processes and consumer products. Copper nanoparticles (Cu NPs) are among the most toxic nanomaterials. We investigated Cu NPs toxicity in Human Hepatocellular carcinoma (HepG2) cells by examining signaling pathways, and microRNA/mRNA interactions. We compared the effects of exposures to Cu NPs at various concentrations and CuCl��� was used as a control. The number of differentially expressed mRNA did not follow a linear dose-response relationship for either Cu NPs or CuCl��� treatments. The most significantly altered genes and pathways by Cu NPs exposure were NRF2 (nuclear factor erythroid 2 related factor 2)-mediated oxidative stress response, protein ubiquitination, Tumor protein p53 (p53), phase I and II metabolizing enzymes, antioxidant proteins and phase III detoxifying gene pathways.Messenger RNA-microRNA interaction from MicroRNA Target Filter Analyses revealed more signaling pathways altered in Cu NPs treated samples than transcriptomics alone, including cell proliferation, DNA methylation, endoplasmic reticulum (ER) stress, apoptosis, autophagy, reactive oxygen species, inflammation, tumorigenesis, extracellular matrix/angiogenesis and protein synthesis. In contrast, in the control (CuCl���) treated samples showed mostly changes in inflammation mainly through regulation of the Nuclear Factor Kappa-light-chain-enhancer of Activated B-cells (NFB). Further, some RNA based parameters that showed promise as biomarkers of Cu NPs exposure including both well and lesser known genes: heme oxygenase 1 (HMOX1), heat shock protein, c-Fos proto-oncogene, DNA methyltransferases, and glutamate-cysteine ligase modifier subunit (GCLM, part of the glutathione synthesis pathway). The differences in signaling pathways altered by the Cu NPs and CuCl��� treatments suggest that the effects of the Cu NPs were not the results of nanomaterial dissolution to soluble copper ions.

References

  1. RNA Biol. 2012 Feb;9(2):137-42 [PMID: 22258222]
  2. Part Fibre Toxicol. 2005 Oct 06;2:8 [PMID: 16209704]
  3. J Nanosci Nanotechnol. 2019 Nov 1;19(11):6907-6923 [PMID: 31039842]
  4. Biochem J. 2011 Apr 1;435(1):127-42 [PMID: 21231916]
  5. Clin Cancer Res. 2010 Jun 1;16(11):2949-58 [PMID: 20395212]
  6. Adv Pharm Bull. 2016 Mar;6(1):99-103 [PMID: 27123424]
  7. Cancer Res. 2010 Feb 1;70(3):1042-52 [PMID: 20103647]
  8. Biochim Biophys Acta. 2013 May;1830(5):3143-53 [PMID: 22995213]
  9. Blood. 2008 Feb 1;111(3):1193-200 [PMID: 18003885]
  10. Chem Soc Rev. 2017 Jul 17;46(14):4218-4244 [PMID: 28585944]
  11. EMBO J. 2005 Oct 5;24(19):3353-9 [PMID: 16148945]
  12. Beilstein J Nanotechnol. 2018 Apr 3;9:1050-1074 [PMID: 29719757]
  13. Neurochem Res. 2012 Aug;37(8):1639-48 [PMID: 22476984]
  14. J Biol Chem. 2016 Oct 14;291(42):22011-22020 [PMID: 27573239]
  15. Anticancer Res. 2017 Dec;37(12):6511-6521 [PMID: 29187425]
  16. Mol Biol Cell. 2013 Jun;24(11):1638-48, S1-7 [PMID: 23552692]
  17. Lab Invest. 2004 Feb;84(2):203-12 [PMID: 14661032]
  18. Free Radic Biol Med. 2008 May 1;44(9):1689-99 [PMID: 18313407]
  19. Hum Exp Toxicol. 2013 Mar;32(3):299-315 [PMID: 22899728]
  20. Methods. 2015 Mar;75:13-8 [PMID: 25484342]
  21. Neurochem Res. 2015 Jan;40(1):15-26 [PMID: 25344926]
  22. Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9157-62 [PMID: 24927563]
  23. Occup Environ Med. 2004 Sep;61(9):727-8 [PMID: 15317911]
  24. Toxicol Lett. 2006 May 25;163(2):109-20 [PMID: 16289865]
  25. J Biol Chem. 2014 Dec 12;289(50):35029-41 [PMID: 25342750]
  26. Cancer Res. 2018 Jul 1;78(13):3497-3509 [PMID: 29735545]
  27. Oncotarget. 2012 Nov;3(11):1272-83 [PMID: 23174755]
  28. Cell Biol Toxicol. 2023 Oct;39(5):2311-2329 [PMID: 35877023]
  29. Aging (Albany NY). 2018 Aug 27;10(8):2113-2121 [PMID: 30153654]
  30. Anc Sci Life. 2015 Jul-Sep;35(1):18-25 [PMID: 26600663]
  31. Hepatology. 2001 Jan;33(1):189-95 [PMID: 11124835]
  32. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  33. Genome Biol. 2014;15(12):545 [PMID: 25476147]
  34. Nucleic Acids Res. 2012 Jan;40(1):37-52 [PMID: 21911355]
  35. Environ Toxicol Pharmacol. 2012 Jul;34(1):67-80 [PMID: 22465980]
  36. Autophagy. 2006 Apr-Jun;2(2):138-9 [PMID: 16874037]
  37. Nanotoxicology. 2012 Feb;6(1):1-21 [PMID: 21319953]
  38. J Nanosci Nanotechnol. 2020 Sep 1;20(9):5833-5858 [PMID: 32331190]
  39. Annu Rev Biochem. 2013;82:387-414 [PMID: 23495935]
  40. J Transl Med. 2011 Oct 10;9:171 [PMID: 21985599]
  41. Biomed Pharmacother. 2017 Dec;96:626-633 [PMID: 29035828]
  42. Exp Cell Res. 2012 May 1;318(8):944-54 [PMID: 22387901]
  43. Int J Mol Sci. 2013 Jan 14;14(1):1566-88 [PMID: 23344057]
  44. J Cell Biochem Suppl. 1998;30-31:111-22 [PMID: 9893262]
  45. J Exp Clin Cancer Res. 2018 Oct 25;37(1):258 [PMID: 30359286]
  46. Biochem J. 2006 Jan 1;393(Pt 1):181-90 [PMID: 16137247]
  47. J Biol Chem. 2009 Nov 27;284(48):33161-8 [PMID: 19721136]
  48. PLoS One. 2010 Apr 26;5(4):e10345 [PMID: 20436681]
  49. Hepatology. 2010 Oct;52(4):1431-42 [PMID: 20842632]
  50. J Nanosci Nanotechnol. 2015 Dec;15(12):9925-37 [PMID: 26682436]
  51. Dose Response. 2010 Aug 12;8(4):501-17 [PMID: 21191487]
  52. J Am Soc Nephrol. 2006 Jul;17(7):1807-19 [PMID: 16738015]
  53. Oncotarget. 2017 Apr 25;8(17):28683-28695 [PMID: 28404923]
  54. Iran Biomed J. 2016;20(1):1-11 [PMID: 26286636]
  55. Neoplasia. 2011 Jul;13(7):590-600 [PMID: 21750653]
  56. Cancer Cell. 2012 Jan 17;21(1):105-20 [PMID: 22264792]
  57. Int J Biol Sci. 2012;8(4):451-8 [PMID: 22419890]
  58. Int J Mol Sci. 2017 Jan 26;18(2): [PMID: 28134767]
  59. J Biol Chem. 2010 Jul 16;285(29):22576-91 [PMID: 20452972]
  60. Free Radic Biol Med. 1993 Mar;14(3):325-37 [PMID: 8458590]
  61. Liver Res. 2019 Mar;3(1):55-64 [PMID: 32670671]
  62. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13221-6 [PMID: 9789069]
  63. Clin Cancer Res. 2011 Jul 15;17(14):4761-71 [PMID: 21610143]
  64. PLoS One. 2012;7(1):e29783 [PMID: 22279545]
  65. Genomics Proteomics Bioinformatics. 2009 Dec;7(4):147-54 [PMID: 20172487]
  66. Nat Commun. 2018 Jan 17;9(1):256 [PMID: 29343728]
  67. J Cell Biochem. 2006 Oct 15;99(3):671-8 [PMID: 16924677]
  68. Cell Cycle. 2009 Mar 1;8(5):712-5 [PMID: 19221490]
  69. IUBMB Life. 2017 Apr;69(4):236-245 [PMID: 28296007]
  70. Curr Protein Pept Sci. 2017;19(2):172-178 [PMID: 28990531]
  71. Trends Mol Med. 2004 Nov;10(11):549-57 [PMID: 15519281]
  72. Cell Death Differ. 2015 Jan;22(1):6-11 [PMID: 24971479]
  73. RNA. 2008 May;14(5):872-7 [PMID: 18367714]
  74. J Biol Chem. 2012 Jun 1;287(23):19687-98 [PMID: 22518844]
  75. Nat Commun. 2017 Nov 21;8(1):1636 [PMID: 29158506]
  76. Toxicol Appl Pharmacol. 2008 Oct 15;232(2):292-301 [PMID: 18706438]
  77. Front Immunol. 2018 Jun 25;9:1377 [PMID: 29988529]
  78. Cancer Lett. 2009 Mar 8;275(1):44-53 [PMID: 19006648]
  79. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12481-6 [PMID: 16885212]
  80. FEBS Lett. 2016 Aug;590(15):2375-97 [PMID: 27404485]
  81. Int J Mol Sci. 2019 Mar 22;20(6): [PMID: 30909528]

Grants

  1. EPA999999/Intramural EPA

MeSH Term

Carcinoma, Hepatocellular
Copper
Hep G2 Cells
Humans
Liver Neoplasms
Metal Nanoparticles
MicroRNAs
Oxidative Stress
Proto-Oncogene Mas
RNA, Messenger

Chemicals

MAS1 protein, human
MicroRNAs
Proto-Oncogene Mas
RNA, Messenger
Copper

Word Cloud

Created with Highcharts 10.0.0CuNPspathwaysCuCl���proteinsignalingalterednanoparticlesusedCopperHumanHepatocellularHepG2effectscontrolmRNAtreatmentsexposurefactor2stressp53phasetreatedsamplesincludingDNAinflammationsynthesisshowedRNAadvancementnanotechnologywidelymanydifferentindustrialprocessesconsumerproductsamongtoxicnanomaterialsinvestigatedtoxicitycarcinomacellsexaminingmicroRNA/mRNAinteractionscomparedexposuresvariousconcentrationsnumberdifferentiallyexpressedfollowlineardose-responserelationshipeithersignificantlygenesNRF2nuclearerythroidrelated-mediatedoxidativeresponseubiquitinationTumorIImetabolizingenzymesantioxidantproteinsIIIdetoxifyinggeneMessengerRNA-microRNAinteractionMicroRNATargetFilterAnalysesrevealedtranscriptomicsalonecellproliferationmethylationendoplasmicreticulumERapoptosisautophagyreactiveoxygenspeciestumorigenesisextracellularmatrix/angiogenesiscontrastmostlychangesmainlyregulationNuclearFactorKappa-light-chain-enhancerActivatedB-cellsNFBbasedparameterspromisebiomarkerswelllesserknowngenes:hemeoxygenase1HMOX1heatshockc-Fosproto-oncogenemethyltransferasesglutamate-cysteineligasemodifiersubunitGCLMpartglutathionepathwaydifferencessuggestresultsnanomaterialdissolutionsolublecopperionsEffectsNanoparticlesSmallExpressionCarcinomaCells

Similar Articles

Cited By