Phenotypic diploidization in plant functional traits uncovered by synthetic neopolyploids in Dianthus broteri.

Juan José Domínguez-Delgado, Javier López-Jurado, Enrique Mateos-Naranjo, Francisco Balao
Author Information
  1. Juan José Domínguez-Delgado: Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain. ORCID
  2. Javier López-Jurado: Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain.
  3. Enrique Mateos-Naranjo: Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain.
  4. Francisco Balao: Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apdo. 1095, 41080-Sevilla, Spain. ORCID

Abstract

Whole-genome duplication and post-polyploidization genome downsizing play key roles in the evolution of land plants; however, the impact of genomic diploidization on functional traits still remains poorly understood. Using Dianthus broteri as a model, we compared the ecophysiological behaviour of colchicine-induced neotetraploids (4xNeo) to diploids (2x) and naturally occurring tetraploids (4xNat). Leaf gas-exchange and chlorophyll fluorescence analyses were performed in order to asses to what extent post-polyploidization evolutionary processes have affected 4xNat. Genomic diploidization and phenotypic novelty were evident. Distinct patterns of variation revealed that post-polyploidization processes altered the phenotypic shifts directly mediated by genome doubling. The photosynthetic phenotype was affected in several ways but the main effect was phenotypic diploidization (i.e. 2x and 4xNat were closer to each other than to 4xNeo). Overall, our results show the potential benefits of considering experimentally synthetized versus naturally established polyploids when exploring the role of polyploidization in promoting functional divergence.

Keywords

References

  1. Ecol Lett. 2014 May;17(5):574-82 [PMID: 24818236]
  2. New Phytol. 2010 Apr;186(1):161-74 [PMID: 20149114]
  3. J Exp Bot. 2003 Nov;54(392):2393-401 [PMID: 14512377]
  4. New Phytol. 2012 Feb;193(3):797-805 [PMID: 22150799]
  5. Am J Bot. 2017 Sep;104(9):1277-1280 [PMID: 29885242]
  6. PLoS Biol. 2018 Jan 11;16(1):e2003706 [PMID: 29324757]
  7. Am J Bot. 2020 Feb;107(2):262-272 [PMID: 31732972]
  8. Ann Bot. 2020 Jul 24;126(2):323-330 [PMID: 32474609]
  9. Am J Bot. 2015 Nov;102(11):1753-6 [PMID: 26451037]
  10. New Phytol. 2015 Jul;207(2):454-467 [PMID: 26053261]
  11. Nat Ecol Evol. 2019 Feb;3(2):265-273 [PMID: 30697006]
  12. Am J Bot. 2016 Jul;103(7):1223-35 [PMID: 27352832]
  13. Genetics. 2007 Aug;176(4):2055-67 [PMID: 17565939]
  14. Am J Bot. 2018 Mar;105(3):348-363 [PMID: 29719043]
  15. Am J Bot. 2009 Jan;96(1):336-48 [PMID: 21628192]
  16. Plant Cell Environ. 2007 Sep;30(9):1035-40 [PMID: 17661745]
  17. Plant Cell. 2010 Jul;22(7):2277-90 [PMID: 20639445]
  18. Plant Physiol. 2016 Mar;170(3):1435-44 [PMID: 26754665]
  19. Ann Bot. 2016 Jan;117(1):195-207 [PMID: 26424782]
  20. New Phytol. 2010 Jul;187(2):542-551 [PMID: 20456054]
  21. Annu Rev Plant Biol. 2007;58:377-406 [PMID: 17280525]
  22. Science. 1994 Apr 15;264(5157):421-4 [PMID: 17836906]
  23. Plant Physiol. 2011 Apr;155(4):2081-95 [PMID: 21289102]
  24. New Phytol. 2009 Nov;184(3):721-731 [PMID: 19703115]
  25. Nat Rev Genet. 2005 Nov;6(11):836-46 [PMID: 16304599]
  26. Ecol Evol. 2019 Dec 18;10(1):198-216 [PMID: 31988723]
  27. New Phytol. 2011 Oct;192(1):256-265 [PMID: 21651562]
  28. Plant J. 2005 Jan;41(2):221-30 [PMID: 15634199]
  29. Am J Bot. 2009 Apr;96(4):762-70 [PMID: 21628231]
  30. Photosynth Res. 1986 Jan;10(1-2):51-62 [PMID: 24435276]
  31. Nat Plants. 2018 May;4(5):258-268 [PMID: 29725103]
  32. Photosynth Res. 2019 Jun;140(3):289-299 [PMID: 30413987]
  33. J Exp Bot. 2000 Apr;51(345):659-68 [PMID: 10938857]
  34. Am J Bot. 2016 Jul;103(7):1259-71 [PMID: 27440792]
  35. New Phytol. 2019 Jan;221(1):93-98 [PMID: 29987878]
  36. Funct Plant Biol. 2007 Aug;34(8):673-682 [PMID: 32689395]
  37. Ann Bot. 2017 Aug 1;120(2):329-339 [PMID: 28633349]
  38. Mol Genet Genomics. 2017 Dec;292(6):1247-1256 [PMID: 28674743]
  39. Photosynth Res. 2013 Nov;117(1-3):45-59 [PMID: 23670217]
  40. PLoS One. 2013;8(3):e57118 [PMID: 23533573]
  41. Am J Bot. 2014 Nov;101(11):1868-75 [PMID: 25366852]
  42. New Phytol. 2007;174(4):717-720 [PMID: 17504455]
  43. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10343-7 [PMID: 19506250]
  44. C R Biol. 2008 Sep;331(9):703-10 [PMID: 18722990]
  45. Ann Bot. 2012 Jan;109(1):19-45 [PMID: 22040744]
  46. Philos Trans R Soc Lond B Biol Sci. 2014 Aug 5;369(1648): [PMID: 24958924]
  47. New Phytol. 2016 Nov;212(3):571-576 [PMID: 27483440]
  48. PLoS One. 2012;7(9):e44784 [PMID: 23028620]
  49. Ann Bot. 2018 Jun 28;122(1):195-205 [PMID: 29726889]
  50. New Phytol. 2019 Mar;221(4):2286-2297 [PMID: 30281801]
  51. Ann Bot. 2009 Oct;104(5):965-73 [PMID: 19633312]
  52. Ecology. 2008 Aug;89(8):2197-206 [PMID: 18724730]
  53. Heredity (Edinb). 2013 Feb;110(2):99-104 [PMID: 23149459]
  54. Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1313-26 [PMID: 20226756]
  55. New Phytol. 2019 Apr;222(2):1076-1087 [PMID: 30585629]
  56. J Biomed Biotechnol. 2011;2011:793198 [PMID: 21660143]

MeSH Term

Dianthus
Diploidy
Genome, Plant
Phenotype
Polyploidy

Word Cloud

Created with Highcharts 10.0.0diploidizationfunctionalphenotypicpost-polyploidizationtraitsDianthusbroteri4xNatgenomecolchicine-induced4xNeo2xnaturallyfluorescenceprocessesaffectedWhole-genomeduplicationdownsizingplaykeyrolesevolutionlandplantshoweverimpactgenomicstillremainspoorlyunderstoodUsingmodelcomparedecophysiologicalbehaviourneotetraploidsdiploidsoccurringtetraploidsLeafgas-exchangechlorophyllanalysesperformedorderassesextentevolutionaryGenomicnoveltyevidentDistinctpatternsvariationrevealedalteredshiftsdirectlymediateddoublingphotosyntheticphenotypeseveralwaysmaineffectiecloserOverallresultsshowpotentialbenefitsconsideringexperimentallysynthetizedversusestablishedpolyploidsexploringrolepolyploidizationpromotingdivergencePhenotypicplantuncoveredsyntheticneopolyploidsChlorophyllautopolyploidyleafgasexchangephotosynthesis

Similar Articles

Cited By