Molecular evolutionary analysis of human primary microcephaly genes.

Nashaiman Pervaiz, Hongen Kang, Yiming Bao, Amir Ali Abbasi
Author Information
  1. Nashaiman Pervaiz: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
  2. Hongen Kang: China National Center for Bioinformation and National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
  3. Yiming Bao: China National Center for Bioinformation and National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. baoym@big.ac.cn.
  4. Amir Ali Abbasi: National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan. abbasiam@qau.edu.pk. ORCID

Abstract

BACKGROUND: There has been a rapid increase in the brain size relative to body size during mammalian evolutionary history. In particular, the enlarged and globular brain is the most distinctive anatomical feature of modern humans that set us apart from other extinct and extant primate species. Genetic basis of large brain size in modern humans has largely remained enigmatic. Genes associated with the pathological reduction of brain size (primary microcephaly-MCPH) have the characteristics and functions to be considered ideal candidates to unravel the genetic basis of evolutionary enlargement of human brain size. For instance, the brain size of microcephaly patients is similar to the brain size of Pan troglodyte and the very early hominids like the Sahelanthropus tchadensis and Australopithecus afarensis.
RESULTS: The present study investigates the molecular evolutionary history of subset of autosomal recessive primary microcephaly (MCPH) genes; CEP135, ZNF335, PHC1, SASS6, CDK6, MFSD2A, CIT, and KIF14 across 48 mammalian species. Codon based substitutions site analysis indicated that ZNF335, SASS6, CIT, and KIF14 have experienced positive selection in eutherian evolutionary history. Estimation of divergent selection pressure revealed that almost all of the MCPH genes analyzed in the present study have maintained their functions throughout the history of placental mammals. Contrary to our expectations, human-specific adoptive evolution was not detected for any of the MCPH genes analyzed in the present study.
CONCLUSION: Based on these data it can be inferred that protein-coding sequence of MCPH genes might not be the sole determinant of increase in relative brain size during primate evolutionary history.

Keywords

References

  1. Science. 2012 Oct 12;338(6104):222-6 [PMID: 22936568]
  2. Bioinformatics. 2012 Apr 15;28(8):1166-7 [PMID: 22368248]
  3. J Neurosci. 2007 Apr 11;27(15):4132-45 [PMID: 17428991]
  4. Genetics. 2000 May;155(1):431-49 [PMID: 10790415]
  5. Hum Mol Genet. 2013 Jun 1;22(11):2200-13 [PMID: 23418308]
  6. Curr Opin Neurobiol. 2017 Feb;42:33-44 [PMID: 27912138]
  7. Sci Adv. 2018 Jan 24;4(1):eaao5961 [PMID: 29376123]
  8. EMBO J. 2013 Jul 3;32(13):1817-28 [PMID: 23624932]
  9. Meta Gene. 2016 Mar 02;9:1-9 [PMID: 27114917]
  10. Nat Genet. 2005 Apr;37(4):353-5 [PMID: 15793586]
  11. Hum Genet. 2016 Oct;135(10):1199-207 [PMID: 27519304]
  12. Science. 2008 Jun 20;320(5883):1632-5 [PMID: 18566285]
  13. Am J Hum Genet. 2010 Jul 9;87(1):40-51 [PMID: 20598275]
  14. Mol Biol Evol. 2002 Jan;19(1):49-57 [PMID: 11752189]
  15. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):7101-7106 [PMID: 30886094]
  16. Cell. 2012 Nov 21;151(5):1097-112 [PMID: 23178126]
  17. Hum Mol Genet. 2012 Dec 15;21(24):5306-17 [PMID: 22983954]
  18. Methods Mol Biol. 2014;1079:155-70 [PMID: 24170401]
  19. Curr Biol. 2012 Sep 25;22(18):R791-2 [PMID: 23017988]
  20. PLoS One. 2013 Oct 16;8(10):e76750 [PMID: 24146922]
  21. Am J Hum Genet. 2009 Feb;84(2):286-90 [PMID: 19215732]
  22. Curr Biol. 2015 Mar 16;25(6):772-779 [PMID: 25702574]
  23. Mol Biol Evol. 2010 Oct;27(10):2257-67 [PMID: 20447933]
  24. Genetics. 2004 Oct;168(2):1041-51 [PMID: 15514074]
  25. Trends Neurosci. 2008 Dec;31(12):637-44 [PMID: 18848363]
  26. Semin Pediatr Neurol. 2009 Sep;16(3):120-6 [PMID: 19778709]
  27. Am J Primatol. 2004 Mar;62(3):139-64 [PMID: 15027089]
  28. Mol Biol Evol. 2013 Dec;30(12):2723-4 [PMID: 24105918]
  29. Mol Biol Evol. 2003 Jan;20(1):18-20 [PMID: 12519901]
  30. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6780-6 [PMID: 8041697]
  31. Trends Neurosci. 1995 Sep;18(9):383-8 [PMID: 7482803]
  32. Nucleic Acids Res. 2002 Jan 1;30(1):38-41 [PMID: 11752248]
  33. Nature. 2014 Jan 2;505(7481):43-9 [PMID: 24352235]
  34. Science. 1988 Jul 8;241(4862):170-6 [PMID: 3291116]
  35. PLoS Genet. 2007 Jan 5;3(1):e2 [PMID: 17206863]
  36. Neuron. 2013 Oct 30;80(3):633-47 [PMID: 24183016]
  37. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  38. Ann Neurol. 2017 Oct;82(4):562-577 [PMID: 28892560]
  39. Nat Rev Neurosci. 2006 Nov;7(11):883-90 [PMID: 17033683]
  40. Am J Hum Genet. 2000 Dec;67(6):1575-7 [PMID: 11067780]
  41. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D501-4 [PMID: 15608248]
  42. Nat Genet. 2010 Nov;42(11):1010-4 [PMID: 20890279]
  43. J Hum Genet. 2006;51(9):760-764 [PMID: 16900296]
  44. Evolution. 2012 Mar;66(3):927-932 [PMID: 22380452]
  45. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1242-6 [PMID: 9448316]
  46. Hum Mol Genet. 2014 Nov 15;23(22):5940-9 [PMID: 24951542]
  47. Nature. 2005 Apr 7;434(7034):755-9 [PMID: 15815628]
  48. Nat Commun. 2011 Dec 13;2:588 [PMID: 22158443]
  49. Cereb Cortex. 2003 Jun;13(6):592-8 [PMID: 12764033]
  50. J Mol Evol. 2004 Jul;59(1):121-32 [PMID: 15383915]
  51. Am J Hum Genet. 2002 Jul;71(1):136-42 [PMID: 12046007]
  52. Hum Mol Genet. 2004 Mar 1;13(5):489-94 [PMID: 14722158]
  53. Am J Hum Genet. 2012 May 4;90(5):871-8 [PMID: 22521416]
  54. Mol Biol Evol. 2005 Apr;22(4):1107-18 [PMID: 15689528]
  55. Am J Hum Genet. 2016 Aug 4;99(2):501-10 [PMID: 27453578]
  56. Hum Mol Genet. 2013 Dec 20;22(25):5199-214 [PMID: 23918663]
  57. Nat Genet. 2002 Oct;32(2):316-20 [PMID: 12355089]
  58. BMC Evol Biol. 2014 Jun 05;14:120 [PMID: 24898820]
  59. Mol Biol Evol. 2005 Dec;22(12):2472-9 [PMID: 16107592]
  60. Novartis Found Symp. 2000;228:30-42; discussion 42-52 [PMID: 10929315]
  61. J Hum Evol. 2000 Feb;38(2):317-32 [PMID: 10656781]
  62. Gene. 2006 Jun 21;375:75-9 [PMID: 16631324]
  63. Mol Biol Evol. 2012 May;29(5):1297-300 [PMID: 22319160]
  64. Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 [PMID: 12883005]
  65. Science. 2005 Sep 9;309(5741):1717-20 [PMID: 16151009]
  66. J Neurosci. 2010 May 19;30(20):7028-36 [PMID: 20484645]
  67. Nat Rev Neurosci. 2008 Feb;9(2):110-22 [PMID: 18209730]
  68. Science. 1995 Jun 16;268(5217):1578-84 [PMID: 7777856]
  69. Mol Biol Evol. 2011 Jan;28(1):625-38 [PMID: 20961963]
  70. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  71. Nature. 2003 Apr 24;422(6934):849-57 [PMID: 12712196]

MeSH Term

Animals
Brain
Evolution, Molecular
Female
Humans
Microcephaly
Placenta
Pregnancy
Primates

Word Cloud

Similar Articles

Cited By