Overlapping roles of spliceosomal components SF3B1 and PHF5A in rice splicing regulation.

Haroon Butt, Jeremie Bazin, Sahar Alshareef, Ayman Eid, Moussa Benhamed, Anireddy S N Reddy, Martin Crespi, Magdy M Mahfouz
Author Information
  1. Haroon Butt: Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia. ORCID
  2. Jeremie Bazin: CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France.
  3. Sahar Alshareef: Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia. ORCID
  4. Ayman Eid: Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia. ORCID
  5. Moussa Benhamed: CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France.
  6. Anireddy S N Reddy: Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
  7. Martin Crespi: CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France.
  8. Magdy M Mahfouz: Laboratory for Genome Engineering and Synthetic Biology, King Abdullah, University of Science and Technology (KAUST), Thuwal, Saudi Arabia. Magdy.mahfouz@kaust.edu.sa. ORCID

Abstract

The SF3B complex, a multiprotein component of the U2 snRNP of the spliceosome, plays a crucial role in recognizing branch point sequence and facilitates spliceosome assembly and activation. Several chemicals that bind SF3B1 and PHF5A subunits of the SF3B complex inhibit splicing. We recently generated a splicing inhibitor-resistant SF3B1 mutant named SF3B1 GEX1A RESISTANT 4 (SGR4) using CRISPR-mediated directed evolution, whereas splicing inhibitor-resistant mutant of PHF5A (Overexpression-PHF5A GEX1A Resistance, OGR) was generated by expressing an engineered version PHF5A-Y36C. Global analysis of splicing in wild type and these two mutants revealed the role of SF3B1 and PHF5A in splicing regulation. This analysis uncovered a set of genes whose intron retention is regulated by both proteins. Further analysis of these retained introns revealed that they are shorter, have a higher GC content, and contain shorter and weaker polypyrimidine tracts. Furthermore, splicing inhibition increased seedlings sensitivity to salt stress, consistent with emerging roles of splicing regulation in stress responses. In summary, we uncovered the functions of two members of the plant branch point recognition complex. The novel strategies described here should be broadly applicable in elucidating functions of splicing regulators, especially in studying the functions of redundant paralogs in plants.

References

  1. J Exp Clin Cancer Res. 2018 Mar 22;37(1):65 [PMID: 29566713]
  2. RNA. 2010 Mar;16(3):516-28 [PMID: 20089683]
  3. RNA. 2010 Dec;16(12):2384-403 [PMID: 20980672]
  4. Cell Mol Life Sci. 2020 Sep;77(18):3583-3595 [PMID: 32140746]
  5. Genome Biol. 2019 Apr 30;20(1):73 [PMID: 31036069]
  6. Nat Cell Biol. 2016 Nov;18(11):1127-1138 [PMID: 27749823]
  7. Nature. 2017 Jun 29;546(7660):617-621 [PMID: 28530653]
  8. PLoS Genet. 2019 Oct 21;15(10):e1008464 [PMID: 31634348]
  9. Plant J. 2017 Jan;89(2):291-309 [PMID: 27664942]
  10. Nat Struct Mol Biol. 2009 Dec;16(12):1237-43 [PMID: 19935684]
  11. Curr Opin Plant Biol. 2015 Apr;24:125-35 [PMID: 25835141]
  12. Genes Dev. 1994 Dec 15;8(24):3008-20 [PMID: 8001820]
  13. Mol Cell. 2018 Apr 19;70(2):265-273.e8 [PMID: 29656923]
  14. Plant Physiol. 2016 Jan;170(1):586-99 [PMID: 26582726]
  15. Plant Cell. 2014 Mar;26(3):996-1008 [PMID: 24681622]
  16. Mol Plant. 2015 Jul;8(7):1038-52 [PMID: 25617718]
  17. Cancer Res. 2018 Jun 15;78(12):3190-3206 [PMID: 29700004]
  18. Nat Med. 2016 Sep 7;22(9):976-86 [PMID: 27603132]
  19. Biochem Biophys Res Commun. 2002 May 3;293(2):816-26 [PMID: 12054543]
  20. J Exp Bot. 2011 Oct;62(14):4731-48 [PMID: 21737415]
  21. Wiley Interdiscip Rev RNA. 2017 Mar;8(2): [PMID: 27440103]
  22. Plant Cell. 2019 Sep;31(9):2052-2069 [PMID: 31266850]
  23. Curr Opin Biotechnol. 2019 Dec;60:72-81 [PMID: 30772756]
  24. Science. 2016 Sep 23;353(6306):1399-1405 [PMID: 27562955]
  25. J Biomed Sci. 2015 Jul 16;22:54 [PMID: 26173448]
  26. Genes (Basel). 2019 Aug 07;10(8): [PMID: 31394891]
  27. Plant Mol Biol. 2019 Jul;100(4-5):379-390 [PMID: 30968308]
  28. Cell Chem Biol. 2019 Mar 21;26(3):443-448.e3 [PMID: 30639260]
  29. Plant Physiol. 2009 Jan;149(1):88-95 [PMID: 19126699]
  30. Cell. 2009 Feb 20;136(4):701-18 [PMID: 19239890]
  31. Plant Cell. 2013 Oct;25(10):3640-56 [PMID: 24179132]
  32. Plant Physiol. 2017 Feb;173(2):1502-1518 [PMID: 28049741]
  33. Nat Genet. 2002 Jan;30(1):13-9 [PMID: 11753382]
  34. Nature. 2010 Jan 28;463(7280):457-63 [PMID: 20110989]
  35. Biochemistry. 2006 Aug 22;45(33):10092-101 [PMID: 16906767]
  36. Trends Biotechnol. 2020 Mar;38(3):236-240 [PMID: 31477243]
  37. Plant Physiol. 2008 May;147(1):41-57 [PMID: 18354039]
  38. Nat Chem Biol. 2007 Sep;3(9):570-5 [PMID: 17643112]
  39. Cell Rep. 2012 May 31;1(5):543-56 [PMID: 22832277]
  40. Nat Commun. 2015 Sep 25;6:8139 [PMID: 26404089]
  41. ACS Chem Biol. 2011 Mar 18;6(3):229-33 [PMID: 21138297]
  42. PLoS One. 2017 May 18;12(5):e0175523 [PMID: 28545085]
  43. Cold Spring Harb Perspect Biol. 2011 Jul 01;3(7): [PMID: 21441581]
  44. Nat Chem Biol. 2007 Sep;3(9):576-83 [PMID: 17643111]
  45. Blood. 2011 Dec 8;118(24):6239-46 [PMID: 21998214]
  46. Mol Cell Biol. 1998 Aug;18(8):4752-60 [PMID: 9671485]
  47. Genome Biol. 2019 Apr 30;20(1):83 [PMID: 31036063]
  48. BMC Genomics. 2017 Mar 27;18(1):260 [PMID: 28347276]
  49. Mol Cell. 2016 Oct 20;64(2):307-319 [PMID: 27720643]
  50. RNA. 2011 Jan;17(1):155-65 [PMID: 21062891]
  51. PLoS Comput Biol. 2015 Mar 13;11(3):e1004105 [PMID: 25768983]
  52. Front Plant Sci. 2018 Feb 12;9:5 [PMID: 29483921]
  53. Nat Rev Mol Cell Biol. 2017 Nov;18(11):655-670 [PMID: 28951565]
  54. Mol Cell Biol. 2012 Dec;32(24):5056-66 [PMID: 23071087]
  55. Nucleic Acids Res. 2017 Jul 7;45(12):7416-7431 [PMID: 28482101]
  56. Nat Rev Drug Discov. 2012 Nov;11(11):847-59 [PMID: 23123942]
  57. Science. 2003 May 9;300(5621):980-4 [PMID: 12738865]
  58. Nat Prod Rep. 2016 May 4;33(5):637-47 [PMID: 26812544]
  59. Nucleic Acids Res. 2020 Jun 19;48(11):6280-6293 [PMID: 32396196]
  60. Biomed Res Int. 2019 Jan 15;2019:1621854 [PMID: 30766880]
  61. Trends Plant Sci. 2019 Jun;24(6):496-506 [PMID: 30852095]
  62. Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110 [PMID: 25155147]
  63. FEBS J. 2011 Dec;278(24):4870-80 [PMID: 21981285]
  64. Nat Commun. 2017 May 25;8:15522 [PMID: 28541300]
  65. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3570-5 [PMID: 25733849]
  66. Genes Dev. 2011 Mar 1;25(5):445-59 [PMID: 21363963]
  67. Rice (N Y). 2012 Mar 08;5(1):6 [PMID: 24764506]
  68. Plant Sci. 2014 Oct;227:90-100 [PMID: 25219311]
  69. Plant Cell. 2018 Oct;30(10):2267-2285 [PMID: 30254029]
  70. Nat Commun. 2017 Dec 13;8(1):2100 [PMID: 29235465]
  71. J Mol Biol. 2006 Feb 24;356(3):664-83 [PMID: 16376933]
  72. Genes Dev. 2018 Feb 1;32(3-4):309-320 [PMID: 29491137]

MeSH Term

Gene Expression Regulation, Plant
Oryza
Plant Proteins
RNA Splicing
RNA Splicing Factors
RNA-Binding Proteins
Spliceosomes

Chemicals

Plant Proteins
RNA Splicing Factors
RNA-Binding Proteins