Targeting of the CD80/86 proinflammatory axis as a therapeutic strategy to prevent severe COVID-19.

Antonio Julià, Irene Bonafonte-Pardàs, Antonio Gómez, María López-Lasanta, Mireia López-Corbeto, Sergio H Martínez-Mateu, Jordi Lladós, Iván Rodríguez-Nunez, Richard M Myers, Sara Marsal
Author Information
  1. Antonio Julià: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain. toni.julia@vhir.org.
  2. Irene Bonafonte-Pardàs: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain.
  3. Antonio Gómez: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain.
  4. María López-Lasanta: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain.
  5. Mireia López-Corbeto: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain.
  6. Sergio H Martínez-Mateu: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain.
  7. Jordi Lladós: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain.
  8. Iván Rodríguez-Nunez: HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
  9. Richard M Myers: HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
  10. Sara Marsal: Rheumatology Department and Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, 08035, Barcelona, Spain. sara.marsal@vhir.org.

Abstract

An excessive immune response known as cytokine storm is the hallmark of severe COVID-19. The cause of this cytokine rampage is yet not known. Based on recent epidemiological evidence, we hypothesized that CD80/86 signaling is essential for this hyperinflammation, and that blocking this proinflammatory axis could be an effective therapeutic approach to protect against severe COVID-19. Here we provide exploratory evidence that abatacept, a drug that blocks CD80/86 co-stimulation, produces changes at the systemic level that are highly antagonistic of the proinflammatory processes elicited by COVID-19. Using RNA-seq from blood samples from a longitudinal cohort of n = 38 rheumatic patients treated with abatacept, we determined the immunological processes that are significantly regulated by this treatment. We then analyzed available blood RNA-seq from two COVID19 patient cohorts, a very early cohort from the epicenter of the pandemic in China (n = 3 COVID-19 cases and n = 3 controls), and a recent and larger cohort from the USA (n = 49 severe and n = 51 mild COVD-19 patients). We found a highly significant antagonism between SARS-CoV-2 infection and COVID-19 severity with the systemic response to abatacept. Analysis of previous single-cell RNA-seq data from bronchoalveolar lavage fluid from mild and severe COVID-19 patients and controls, reinforce the implication of the CD80/86 proinflammatory axis. Our functional results further support abatacept as a candidate therapeutic approach to prevent severe COVID-19.

References

  1. Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020). [DOI: 10.1001/jama.2020.2648]
  2. Wu, J. T. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 26, 1–5 (2020).
  3. Moore, B. J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. Science (New York) 368, 473 (2020). [DOI: 10.1126/science.abb8925]
  4. Ñamendys-Silva, S. A. Respiratory support for patients with COVID-19 infection. Lancet Respir. Med. 8, e18 (2020). [PMID: 32145829]
  5. Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 1–8 (2020).
  6. Michelena, X. et al. Incidence of COVID-19 in a cohort of adult and paediatric patients with rheumatic diseases treated with targeted biologic and synthetic disease-modifying anti-rheumatic drugs. Semin. Arthritis Rheum. 50, 564–570 (2020). [PMID: 32425260]
  7. Ruan, Q., Yang, K., Wang, W., Jiang, L. & Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. China. Intens. Care Med. 46, 1–3 (2020).
  8. Guo, C. et al. Tocilizumab treatment in severe COVID-19 patients attenuates the inflammatory storm incited by monocyte centric immune interactions revealed by single-cell analysis. BioRxiv. https://doi.org/10.1101/2020.04.08.029769 (2020). [DOI: 10.1101/2020.04.08.029769]
  9. Genovese, M. C. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor α inhibition. N. Engl. J. Med. 353, 1114–1123 (2005). [PMID: 16162882]
  10. Liao, M. et al. The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. MedRxiv. https://doi.org/10.1101/2020.02.23.20026690 (2020). [DOI: 10.1101/2020.02.23.20026690]
  11. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 1–3 (2020). [DOI: 10.1038/s41591-020-0901-9]
  12. Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369, 1203 (2020). [DOI: 10.1126/science.abc8511]
  13. Xiong, Y. et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg. Microbes Infect. 9, 761–770 (2020). [PMID: 32228226]
  14. Overmyer, K. A. et al. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 12, 23–40 (2020). [PMID: 33096026]
  15. Kopf, M., Schneider, C. & Nobs, S. P. The development and function of lung-resident macrophages and dendritic cells. Nat. Immunol. 16, 36 (2015). [PMID: 25521683]
  16. Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501 (2020). [PMID: 32473127]
  17. Mehta, P. et al. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034 (2020). [PMID: 32192578]
  18. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020). [PMID: 31986264]
  19. Vabret, N. et al. Immunology of COVID-19: Current state of the science. Immunity 52, 910–941 (2020). [PMID: 32505227]
  20. Gong, J. et al. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. MedRxiv 3, 020 (2020).
  21. Gao, T. et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. MedRxiv 25, 777 (2020).
  22. Zhang, L. et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J. Med. Virol. 78, 1–8 (2006). [PMID: 16299724]
  23. Wang, S.-F. et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 451, 208–214 (2014). [PMID: 25073113]
  24. Jaume, M. et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH-and cysteine protease-independent FcγR pathway. J. Virol. 85, 10582–10597 (2011). [PMID: 21775467]
  25. Liu, L. et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI iIsight. https://doi.org/10.1172/jci.insight.123158 (2019). [DOI: 10.1172/jci.insight.123158]
  26. Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20, 1–3 (2020). [DOI: 10.1038/s41577-020-0321-6]
  27. Lee, W. S., Wheatley, A. K., Kent, S. J. & DeKosky, B. J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5, 1185–1191 (2020). [PMID: 32908214]
  28. Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463–469 (2020). [PMID: 32717743]
  29. Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): A double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008). [PMID: 18358926]
  30. Fernández-Diaz, C. et al. Abatacept in patients with rheumatoid arthritis and interstitial lung disease: A national multicenter study of 63 patients. Semin. Arthritis Rheum. 48, 22–27 (2018). [PMID: 29422324]
  31. Israël-Assayag, E., Fournier, M. & Cormier, Y. Blockade of T cell costimulation by CTLA4-Ig inhibits lung inflammation in murine hypersensitivity pneumonitis. J. Immunol. 163, 6794–6799 (1999). [PMID: 10586079]
  32. Nicod, L. P., Joudrier, S., Isler, P., Spiliopoulos, A. & Pache, J.-C. Upregulation of CD40, CD80, CD83 or CD86 on alveolar macrophages after lung transplantation. J. Hear. Lung Transplant. 24, 1067–1075 (2005). [DOI: 10.1016/j.healun.2004.07.011]
  33. Parker, D. CD80/CD86 signaling contributes to the proinflammatory response of Staphylococcus aureus in the airway. Cytokine 107, 130–136 (2018). [PMID: 29402722]
  34. Montastruc, F. et al. Abatacept initiation in rheumatoid arthritis and the risk of serious infection: A population-based cohort study. Semin. Arthritis Rheum. 48, 1053–1058 (2019). [PMID: 30772001]
  35. Chen, S. K., Liao, K. P., Liu, J. & Kim, S. C. Risk of hospitalized infection and initiation of abatacept versus tumor necrosis factor inhibitors among patients with rheumatoid arthritis: A propensity score—Matched Cohort Study. Arthritis Care Res. (Hoboken) 72, 9–17 (2020). [DOI: 10.1002/acr.23824]
  36. Atzeni, F. et al. Long-term safety of abatacept in patients with rheumatoid arthritis. Autoimmun. Rev. 12, 1115–1117 (2013). [PMID: 23800448]
  37. Alten, R. et al. ASCORE, a 2-year, observational, prospective multicentre study of subcutaneous abatacept for the treatment of rheumatoid arthritis in routine clinical practice: 1-year interim analysis. BMJ J. 78, 1639 (2019).
  38. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). [PMID: 23104886]
  39. Fu, Y., Wu, P.-H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics 19, 531 (2018). [PMID: 30001700]
  40. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). [PMID: 19505943]
  41. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). [DOI: 10.1093/bioinformatics/btt656]
  42. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). [PMID: 25605792]
  43. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014). [PMID: 24485249]
  44. Aguirre-Gamboa, R. et al. Deconvolution of bulk blood eQTL effects into immune cell subpopulations. BMC Bioinform. 21, 1–23 (2020). [DOI: 10.1186/s12859-020-03576-5]
  45. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). [PMID: 19910308]
  46. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550 (2005). [PMID: 16199517]
  47. Dkebski, K. J. et al. Etiology matters—Genomic DNA methylation patterns in three rat models of acquired epilepsy. Sci. Rep. 6, 1–14 (2016).
  48. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
  49. Shi, Y. et al. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 27, 1451–1454 (2020). [PMID: 32205856]
  50. Fogarty, H. et al. COVID-19 coagulopathy in Caucasian patients. Br. J. Haematol. 189, 1044–1049 (2020). [PMID: 32330308]
  51. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). [PMID: 29608179]
  52. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). [PMID: 31178118]
  53. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 1–15 (2019). [DOI: 10.1186/s13059-019-1874-1]
  54. Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat. Rev. Immunol. 4, 336–347 (2004). [PMID: 15122199]

MeSH Term

Abatacept
Aged
Arthritis, Rheumatoid
B7-1 Antigen
B7-2 Antigen
Bronchoalveolar Lavage Fluid
COVID-19
China
Cytokine Release Syndrome
Female
Humans
Immunosuppressive Agents
Male
Middle Aged
Observational Studies as Topic
RNA-Seq
SARS-CoV-2
Severity of Illness Index
Signal Transduction
Single-Cell Analysis
Spain
United States
Up-Regulation
COVID-19 Drug Treatment

Chemicals

B7-1 Antigen
B7-2 Antigen
CD80 protein, human
CD86 protein, human
Immunosuppressive Agents
Abatacept

Word Cloud

Similar Articles

Cited By