An inverse modelling study on the local volume changes during early morphoelastic growth of the fetal human brain.

Z Wang, B Martin, J Weickenmeier, K Garikipati
Author Information
  1. Z Wang: Mechanical Engineering, University of Michigan, United States.
  2. B Martin: Computer Science and Engineering, University of Michigan, United States.
  3. J Weickenmeier: Mechanical Engineering, Stevens Institute of Technology, United States.
  4. K Garikipati: Mechanical Engineering, Mathematics and Michigan Institute for Computational Discovery & Engineering, University of Michigan, United States.

Abstract

We take a data-driven approach to deducing the local volume changes accompanying early development of the fetal human brain. Our approach uses fetal brain atlas MRI data for the geometric changes in representative cases. Using a nonlinear continuum mechanics model of morphoelastic growth, we invert the deformation obtained from MRI registration to arrive at a field for the growth deformation gradient tensor. Our field inversion uses a combination of direct and adjoint methods for computing gradients of the objective function while constraining the optimization by the physics of morphoelastic growth. We thus infer a growth deformation gradient field that obeys the laws of morphoelastic growth. The errors between the MRI data and the forward displacement solution driven by the inverted growth deformation gradient field are found to be smaller than the reference displacement by well over an order of magnitude, and can be driven even lower. The results thus reproduce the three-dimensional growth during the early development of the fetal brain with controllable error. Our findings confirm that early growth is dominated by in plane cortical expansion rather than thickness increase.

References

  1. J Biomech Eng. 2002 Apr;124(2):244-52 [PMID: 12002135]
  2. Neuroradiology. 1998 Mar;40(3):173-6 [PMID: 9561523]
  3. J Mech Phys Solids. 2011 Apr 1;59(4):863-883 [PMID: 21532929]
  4. J Neurosci. 2011 Feb 23;31(8):2878-87 [PMID: 21414909]
  5. Cereb Cortex. 1996 Mar-Apr;6(2):207-14 [PMID: 8670651]
  6. Anat Embryol (Berl). 1988;179(2):173-9 [PMID: 3232854]
  7. Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3156-3161 [PMID: 29507201]
  8. Phys Rev Lett. 2013 Jan 11;110(2):024302 [PMID: 23383906]
  9. Nature. 1997 Jan 23;385(6614):313-8 [PMID: 9002514]
  10. Philos Trans A Math Phys Eng Sci. 2017 May 13;375(2093): [PMID: 28373385]
  11. Acta Biomater. 2016 Sep 15;42:265-272 [PMID: 27475531]
  12. Biomech Model Mechanobiol. 2015 Oct;14(5):931-65 [PMID: 25716305]
  13. Sci Rep. 2017 Mar 28;7(1):476 [PMID: 28352082]
  14. Neuroradiology. 2010 Jun;52(6):479-87 [PMID: 20198472]
  15. J Biomech Eng. 2010 Jul;132(7):071013 [PMID: 20590291]
  16. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):292-9 [PMID: 25485391]
  17. Neuroimage. 2012 Nov 1;63(2):947-58 [PMID: 22503938]
  18. Biomech Model Mechanobiol. 2009 Jun;8(3):167-81 [PMID: 18470548]
  19. Cereb Cortex. 2012 Jan;22(1):13-25 [PMID: 21571694]
  20. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  21. J Mech Behav Biomed Mater. 2010 Feb;3(2):158-66 [PMID: 20129415]
  22. Front Cell Neurosci. 2015 Jul 08;9:257 [PMID: 26217183]
  23. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19132-5 [PMID: 19036924]
  24. Sci Rep. 2014 Jul 10;4:5644 [PMID: 25008163]
  25. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 1):030601 [PMID: 15524496]
  26. Indian J Psychol Med. 2015 Oct-Dec;37(4):452-5 [PMID: 26702182]
  27. J Child Neurol. 2005 Apr;20(4):392-7 [PMID: 15921244]
  28. Acta Biomater. 2017 Jan 15;48:319-340 [PMID: 27989920]
  29. Phys Biol. 2013 Feb;10(1):016005 [PMID: 23357794]
  30. Biorheology. 2010;47(5-6):255-76 [PMID: 21403381]

Grants

  1. R21 AG067442/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0growthearlyfetalbrainmorphoelasticdeformationfieldchangesMRIgradientapproachlocalvolumedevelopmenthumanusesdatathusdisplacementdriventakedata-drivendeducingaccompanyingatlasgeometricrepresentativecasesUsingnonlinearcontinuummechanicsmodelinvertobtainedregistrationarrivetensorinversioncombinationdirectadjointmethodscomputinggradientsobjectivefunctionconstrainingoptimizationphysicsinferobeyslawserrorsforwardsolutioninvertedfoundsmallerreferencewellordermagnitudecanevenlowerresultsreproducethree-dimensionalcontrollableerrorfindingsconfirmdominatedplanecorticalexpansionratherthicknessincreaseinversemodellingstudy

Similar Articles

Cited By