Chromosome-scale genome assembly of areca palm (Areca catechu).

Yaodong Yang, Liyun Huang, Chunyan Xu, Lan Qi, Zhangyan Wu, Jia Li, Haixin Chen, Yi Wu, Tao Fu, Hui Zhu, Mumtaz Ali Saand, Jing Li, Liyun Liu, Haikou Fan, Huanqi Zhou, Weiquan Qin
Author Information
  1. Yaodong Yang: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  2. Liyun Huang: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  3. Chunyan Xu: BGI Genomics, BGI-Shenzhen, Shenzhen, China.
  4. Lan Qi: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  5. Zhangyan Wu: BGI Genomics, BGI-Shenzhen, Shenzhen, China.
  6. Jia Li: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  7. Haixin Chen: BGI Genomics, BGI-Shenzhen, Shenzhen, China.
  8. Yi Wu: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  9. Tao Fu: BGI Genomics, BGI-Shenzhen, Shenzhen, China.
  10. Hui Zhu: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  11. Mumtaz Ali Saand: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  12. Jing Li: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  13. Liyun Liu: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  14. Haikou Fan: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  15. Huanqi Zhou: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China.
  16. Weiquan Qin: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China. ORCID

Abstract

Areca palm (Areca catechu L.; family Arecaceae) is an important tropical medicinal crop and is also used for masticatory and religious purposes in Asia. Improvements to areca properties made by traditional breeding tools have been very slow, and further advances in its cultivation and practical use require genomic information, which is still unavailable. Here, we present a chromosome-scale reference genome assembly for areca by combining Illumina and PacBio data with Hi-C mapping technologies, covering the predicted A. catechu genome length (2.59 Gb, variety "Reyan#1") to an estimated 240× read depth. The assembly was 2.51 Gb in length with a scaffold N50 of 1.7Mb. The scaffolds were then further assembled into 16 pseudochromosomes, with an N50 of 172 Mb. Transposable elements comprised 80.37% of the areca genome, and 68.68% of them were long-terminal repeat retrotransposon elements. The areca palm genome was predicted to harbour 31,571 protein-coding genes and overall, 92.92% of genes were functionally annotated, including enriched and expanded families of genes responsible for biosynthesis of flavonoid, anthocyanin, monoterpenoid and their derivatives. Comparative analyses indicated that A. catechu probably diverged from its close relatives Elaeis guineensis and Cocos nucifera approximately 50.3 million years ago (Ma). Two whole genome duplication events in areca palm were found to be shared by palms and monocots, respectively. This genome assembly and associated resources represents an important addition to the palm genomics community and will be a valuable resource that will facilitate areca palm breeding and improve our understanding of areca palm biology and evolution.

Keywords

References

  1. Al-Dous, E. K., George, B., Al-Mahmoud, M. E., Al-Jaber, M. Y., Wang, H., Salameh, Y. M., Al-Azwani, E. K., Chaluvadi, S., Pontaroli, A. C., DeBarry, J., Arondel, V., Ohlrogge, J., Saie, I. J., Suliman-Elmeer, K. M., Bennetzen, J. L., Kruegger, R. R., & Malek, J. A. (2011). De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology, 29, 521-527.
  2. Al-Mssallem, I. S., Hu, S., Zhang, X., Lin, Q., Liu, W., Tan, J., Yu, X., Liu, J., Pan, L., Zhang, T., Yin, Y., Xin, C., Wu, H., Zhang, G., Ba Abdullah, M. M., Huang, D., Fang, Y., Alnakhli, Y. O., Jia, S., … Yu, J. (2013). Genome sequence of the date palm Phoenix dactylifera L. Nature Communications, 4, 2274.
  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.
  4. Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796-815. Retrieved from http://www.nature.com/nature/journal/v408/n6814/suppinfo/408796a0_S1.html
  5. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinki, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics, 25, 25-29.
  6. Attwood, T. K., Croning, M. D., Flower, D. R., Lewis, A. P., Mabey, J. E., Scordis, P., Selley, J. N., & Wright, W. (2000). PRINTS-S: The database formerly known as PRINTS. Nucleic Acids Research, 28, 225-227.
  7. Bairoch, A.,& Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in. Nucleic Acids Research, 28, 45-48.
  8. Barrett, C. F., McKain, M. R., Sinn, B. T., Ge, X. J., Zhang, Y., Antonelli, A., & Bacon, C. D. (2019). Ancient polyploidy and genome evolution in palms. Genome Biology and Evolution, 11, 1501-1511.
  9. Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L., & Sonnhammer, E. L. (2000). The Pfam protein families database. Nucleic Acids Research, 28, 263-266.
  10. Baucom, R. S., Estill, J. C., Chaparro, C., Upshaw, N., Jogi, A., Deragon, J. -M., Westerman, R. P., SanMiguel, P. J., & Bennetzen, J. L. (2009). Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genetics, 5(11), e1000732.
  11. Bennetzen, J. L. (2000). Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology, 42, 251-269.
  12. Bennetzen, J. L., & Wang, H. (2014). The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annual Review of Plant Biology, 65(1), 505-530.
  13. Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27, 573-580.
  14. Bhalla, A., Thirumalaikolundusubramanian, P., Fung, J., Cordero-Schmidt, G., Soghoian, S., Sikka, V. K., Dhindsa, H. S., & Singh, S. (2015). Native medicines and cardiovascular toxicity. In M. Ramachandran (Ed.), Heart and toxins (pp. 175-202). Academic Press.
  15. Bickhart, D. M., Rosen, B. D., Koren, S., Sayre, B. L., Hastie, A. R., Chan, S., Lee, J., Lam, E. T., Liachko, I., Sullivan, S. T., Burton, J. N., Huson, H. J., Nystrom, J. C., Kelley, C. M., Hutchison, J. L., Zhou, Y., Sun, J., Crisà, A., Ponce de León, F. A., … Smith, T. P. L. (2017). Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genetics, 49, 643-650.
  16. Birol, I., Raymond, A., Jackman, S. D., Pleasance, S., Coope, R., Taylor, G. A., Yuen, M. M. S., Keeling, C. I., Brand, D., Vandervalk, B. P., Kirk, H., Pandoh, P., Moore, R. A., Zhao, Y., Mungall, A. J., Jaquish, B., Yanchuk, A., Ritland, C., Boyle, B., … Jones, S. J. M. (2013). Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics, 29(12), 1492-1497.
  17. Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., & Pirovano, W. (2011). Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27, 578-579.
  18. Burge, S., Kelly, E., Lonsdale, D., Mutowo-Muellenet, P., McAnulla, C., Mitchell, A., Sangrador-Vegas, A., Yong, S.-Y., Mulder, N., & Hunter, S. (2012). Manual GO annotation of predictive protein signatures: The InterPro approach to GO curation. Database, 2012, bar068.
  19. Burton, J. N., Adey, A., Patwardhan, R. P., Qiu, R., Kitzman, J. O., & Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 31, 1119-1125.
  20. Cantarel, B. L., Korf, I., Robb, S. MC., Parra, G., Ross, E., Moore, B., Holt, C., Sanchez Alvarado, A., & Yandell, M. (2007). MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research, 18(1), 188-196.
  21. Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., Zhang, X., Wang, J., Yang, H., Fang, L., & Chen, Q. (2018). SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience, 7(1), 1-6.
  22. Corpet, F., Gouzy, J., & Kahn, D. (1999). Recent improvements of the ProDom database of protein domain families. Nucleic Acids Research, 27, 263-267.
  23. D’Hont, A., Denoeud, F., Aury, J. -M., Baurens, F. -C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., Rouard, M., Da Silva, C., Jabbari, K., Cardi, C., Poulain, J., Souquet, M., Labadie, K., Jourda, C., Lengellé, J., Rodier-Goud, M., … Wincker, P. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213-217.
  24. De Bie, T., Cristianini, N., Demuth, J. P., & Hahn, M. W. (2006). CAFE: A computational tool for the study of gene family evolution. Bioinformatics, 22(10), 1269-1271.
  25. Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M., Zheng, C., Alberti, A., Anthony, F., Aprea, G., Aury, J.-M., Bento, P., Bernard, M., Bocs, S., Campa, C., Cenci, A., Combes, M.-C., Crouzillat, D., Da Silva, C., … Lashermes, P. (2014). The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 345(6201), 1181-1184.
  26. Dong, X., Wang, Z., Tian, L., Zhang, Y., Qi, D., Huo, H., Xu, J., Li, Z., Liao, R., Shi, M., Wahocho, S. A., Liu, C., Zhang, S., Tian, Z., & Cao, Y. (2019). De novo assembly of a wild pear (Pyrus betuleafolia). Genome Plant Biotechnology Journal, 18, 581-595.
  27. Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science (New York, NY), 356, 92-95.
  28. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.
  29. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., deWinter, A., Dixon, J., … Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910), 133-138.
  30. English, A. C., Richards, S., Han, Y. I., Wang, M., Vee, V., Qu, J., Qin, X., Muzny, D. M., Reid, J. G., Worley, K. C., & Gibbs, R. A. (2012). Mind the gap: Upgrading genomes with pacific biosciences RS long-read sequencing technology. PLoS One, 7, e47768.
  31. Gaur, R., Jeena, G., Shah, N., Gupta, S., Pradhan, S., Tyagi, A. K., Jain, M., Chattopadhyay, D., & Bhatia, S. (2015). High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Scientific Reports, 5, 13387. Retrieved from https://www.nature.com/articles/srep13387#supplementary-information
  32. Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B. M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., … Briggs, S. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science, 296(5565), 92-100.
  33. Guo, L. I., Winzer, T., Yang, X., Li, Y. I., Ning, Z., He, Z., Teodor, R., Lu, Y., Bowser, T. A., Graham, I. A., & Ye, K. (2018). The opium poppy genome and morphinan production. Science, 362(6412), 343-347.
  34. Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160-174.
  35. Henderson, A. (2009). The palms of Southern Asia. In A. Henderson (Ed.), Palms of Southern Asia (pp. 29-174). Princeton University Press.
  36. Hu, L., Xu, Z., Wang, M., Fan, R., Yuan, D., Wu, B., Wu, H., Qin, X., Yan, L., Tan, L., Sim, S., Li, W., Saski, C. A., Daniell, H., Wendel, J. F., Lindsey, K., Zhang, X., Hao, C., & Jin, S. (2019). The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature Communications, 10, 4702.
  37. Huang LL, L., Li, Y., Zhou, H., & Yan, Y. (2015). Effects of chilling stress on physiological characteristics of a new areca variety ‘Reyan No.1’. Chinese Journal of Tropical Crops, 36, 4.
  38. Huang, S., Li, R., Zhang, Z., Li, L. I., Gu, X., Fan, W., Lucas, W. J., Wang, X., Xie, B., Ni, P., Ren, Y., Zhu, H., Li, J., Lin, K., Jin, W., Fei, Z., Li, G., Staub, J., Kilian, A., … Li, S. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275-1281.
  39. Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T., Zhang, Z., Li, M., Fan, D., Guo, Y., Wang, A., Wang, L., Deng, L., Li, W., Lu, Y., Weng, Q., … Han, B. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42(11), 961-967.
  40. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755.
  41. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P. S., Pagni, M., & Sigrist, C. J. (2006). The PROSITE database. Nucleic Acids Research, 34, D227-D230.
  42. Jackson, S., & Chen, Z. J. (2010). Genomic and expression plasticity of polyploidy. Current Opinion in Plant Biology, 13, 153-159.
  43. Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B., & Akeson, M. (2015). Improved data analysis for the MinION nanopore sequencer. Nature Methods, 12, 351-356.
  44. Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J., Ohyanagi, H., Mineta, K., Michell, C. T., Saber, N., Kharbatia, N. M., Rupper, R. R., Sharp, A. R., Dally, N., Boughton, B. A., Woo, Y. H., Gao, G., Schijlen, E. G., Guo, X., … Tester, M. (2017). The genome of Chenopodium quinoa. Nature, 542, 307. Retrieved from https://www.nature.com/articles/nature21370#supplementary-information
  45. Jiang, S.-Y., & Ramachandran, S. (2013). Genome-wide survey and comparative analysis of LTR retrotransposons and their captured genes in rice and sorghum. PLoS One, 8, e71118.
  46. Jiao, Y., Li, J., Tang, H., & Paterson, A. H. (2014). Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots. The Plant Cell, 26, 2792-2802.
  47. Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240.
  48. Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., & Walichiewicz, J. (2005). Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4), 462-467.
  49. Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., Yabana, M., Harada, M., Nagayasu, E., Maruyama, H., Kohara, Y., Fujiyama, A., Hayashi, T., & Itoh, T. (2014). Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Research, 24, 1384-1395.
  50. Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E., & Schulman, A. H. (2000). Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences, 97, 6603-6607.
  51. Kent, W. J. (2002). BLAT---The BLAST-like alignment tool. Genome Research, 12(4), 656-664.
  52. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357-360. Retrieved from https://www.nature.com/articles/nmeth.3317#supplementary-information
  53. Koonin, E. V., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Krylov, D. M., Makarova, K. S., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Sridhar Rao, B., Rogozin, I. B., Smirnov, S., Sorokin, A. V., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., & Natale, D. A. (2004). A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 5, R7.
  54. Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5, 59.
  55. Kumar, A., & Bennetzen, J. L. (1999). Plant retrotransposons. Annual Review of Genetics, 33, 479-532.
  56. Lam, E. T., Hastie, A., Lin, C., Ehrlich, D., Das, S. K., Austin, M. D., Deshpande, P., Cao, H., Nagarajan, N., Xiao, M., & Kwok, P.-Y. (2012). Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nature Biotechnology, 30, 771-776.
  57. Lam, S. D., Dawson, N. L., Das, S., Sillitoe, I., Ashford, P., Lee, D., Lehtinen, S., Orengo, C. A., & Lees, J. G. (2016). Gene3D: Expanding the utility of domain assignments. Nucleic Acids Research, 44(D1), D404-D409.
  58. Lau, N.-S., Makita, Y., Kawashima, M., Taylor, T. D., Kondo, S., Othman, A. S., Shu-Chien, A. C., & Matsui, M. (2016). The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Scientific Reports, 6, 28594.
  59. Li, L., Stoeckert, C. J. Jr, & Roos, D. S. (2003). OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178-2189.
  60. Ma, J., Devos, K. M., & Bennetzen, J. L. (2004). Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research, 14, 860-869.
  61. Manimekalai, R., Nair, S., Naganeeswaran, A., Karun, A., Malhotra, S., & Hubbali, V. (2018). Transcriptome sequencing and de novo assembly in arecanut. Areca catechu L elucidates the secondary metabolite pathway genes. Biotechnology Reports, 17, 63-69.
  62. Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764-770.
  63. Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2017). PANTHER version 11: Expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(D1), D183-D189.
  64. Michael, T. P. (2014). Plant genome size variation: Bloating and purging DNA. Briefings in Functional Genomics, 13, 308-317.
  65. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321-4325.
  66. Neves, L. G., Davis, J. M., Barbazuk, W. B., & Kirst, M. (2014). A high-density gene map of loblolly pine (Pinus taeda L.). Based on exome sequence capture genotyping. G3: Genes|genomes|genetics, 4, 29-37.
  67. Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y. C., Scofield, D. G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E., Elfstrand, M., Gramzow, L., Holmberg, K., Hällman, J., Keech, O., Klasson, L., … Jansson, S. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497, 579. Retrieved from https://www.nature.com/articles/nature12211#supplementary-information
  68. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27, 29-34.
  69. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A. K., Chapman, J., Feltus, F. A., Gowik, U., … Rokhsar, D. S. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551-556.
  70. Pedruzzi, I., Rivoire, C., Auchincloss, A. H., Coudert, E., Keller, G., de Castro, E., Baratin, D., Cuche, B. A., Bougueleret, L., Poux, S., Redaschi, N., Xenarios, I., & Bridge, A. (2015). HAMAP in 2015: Updates to the protein family classification and annotation system. Nucleic Acids Research, 43(D1), D1064-D1070.
  71. Pereira, V. (2004). Insertion bias and purifying selection of retrotransposons in the Arabidopsis thalianagenome. Genome Biology, 5, R79.
  72. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11, 1650. Retrieved from https://www.nature.com/articles/nprot.2016.095#supplementary-information
  73. Prunier, J., Verta, J.-P., & MacKay, J. J. (2016). Conifer genomics and adaptation: At the crossroads of genetic diversity and genome function. New Phytologist, 209(1), 44-62.
  74. Rao, M. M. (1982). Introduction. The arecanut palm (Areca catechu Linn.) (pp. 1-7). Central Plantation Crops Research Institute.
  75. Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., & Aiden, E. L. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7), 1665-1680.
  76. Saikia, J. R., Schneeweiss, F. H., & Sharan, R. N. (1999). Arecoline-induced changes of poly-ADP-ribosylation of cellular proteins and its influence on chromatin organization. Cancer Letters, 139, 59-65.
  77. SanMiguel, P., Gaut, B. S., Tikhonov, A., Nakajima, Y., & Bennetzen, J. L. (1998). The paleontology of intergene retrotransposons of maize. Nature Genetics, 20, 43-45.
  78. Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P., & Bork, P. (2000). SMART: A web-based tool for the study of genetically mobile domains. Nucleic Acids Research, 28, 231-234.
  79. Selengut, J. D., Haft, D. H., Davidsen, T., Ganapathy, A., Gwinn-Giglio, M., Nelson, W. C., Richter, A. R., & White, O. (2007). TIGRFAMs and genome properties: Tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Research, 35, D260-D264.
  80. Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212.
  81. Singh, R., Ong-Abdullah, M., Low, E.-T., Manaf, M. A. A., Rosli, R., Nookiah, R., Ooi, L.-L., Ooi, S. E., Chan, K.-L., Halim, M. A., Azizi, N., Nagappan, J., Bacher, B., Lakey, N., Smith, S. W., He, D., Hogan, M., Budiman, M. A., Lee, E. K., … Sambanthamurthi, R. (2013). Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature, 500, 335-339.
  82. Soltis, D. E., Visger, C. J., & Soltis, P. S. (2014). The polyploidy revolution then…and now: Stebbins revisited. American Journal of Botany, 101(7), 1057-1078.
  83. Song, S., Tian, D., Zhang, Z., Hu, S., & Yu, J. (2018). Rice genomics: Over the past two decades and into the future genomics. Proteomics & Bioinformatics, 16, 397-404.
  84. Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., & Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research, 34, W435-W439.
  85. Staples, G. W., & Beveacqua, R. F. (2006). Areca catechu (betel nut palm). In C. R. Elevitch (Ed.), Species profiles for Pacific Island agroforestry. Hōlualoa, Hawaii: Permanent Agriculture Resources (PAR).
  86. Tang, H., Bowers, J. E., Wang, X., Ming, R., Alam, M., & Paterson, A. H. (2008). Synteny and collinearity in plant genomes. Science, 320(5875), 486-488.
  87. Tarailo-Graovac, M., & Chen, N. (2009). Using repeatmasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 25, 4.10.1-4.10.14.
  88. Tenaillon, M. I., Hollister, J. D., & Gaut, B. S. (2010). A triptych of the evolution of plant transposable elements. Trends in Plant Science, 15, 471-478.
  89. Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., … Rokhsar, D. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science (New York, NY), 313, 1596-1604.
  90. Vicient, C. M., Suoniemi, A., Anamthawat-Jónsson, K., Tanskanen, J., Beharav, A., Nevo, E., & Schulman, A. H. (1999). Retrotransposon BARE-1 and Its role in genome evolution in the genus Hordeum. The Plant Cell, 11, 1769-1784.
  91. Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9(11), e112963.
  92. Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Biology, 42, 225-249.
  93. Wessler, S. R., Bureau, T. E., & White, S. E. (1995). LTR-retrotransposons and MITEs: Important players in the evolution of plant genomes. Current Opinion in Genetics & Development, 5, 814-821.
  94. Wilson, D., Pethica, R., Zhou, Y., Talbot, C., Vogel, C., Madera, M., Chothia, C., & Gough, J. (2009). SUPERFAMILY-sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Research, 37(suppl_1), D380-D386.
  95. Wu, C. H., Nikolskaya, A., Huang, H., Yeh, L. S., Natale, D. A., Vinayaka, C. R., Hu, Z. Z., Mazumder, R., Kumar, S., Kourtesis, P., Ledley, R. S., Suzek, B. E., Arminski, L., Chen, Y., Zhang, J., Cardenas, J. L., Chung, S., Castro-Alvear, J., Dinkov, G., … Barker, W. C. (2004). PIRSF: Family classification system at the protein information resource. Nucleic Acids Research, 32(90001), 112D-114.
  96. Xiao, C.-L., Chen, Y., Xie, S.-Q., Chen, K.-N., Wang, Y., Han, Y., Luo, F., & Xie, Z. (2017). MECAT: Fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nature Methods, 14, 1072-1074.
  97. Xiao, Y., Xu, P., Fan, H., Badouin, L., Xia, W., Bocs, S., Xu, J., Li, Q., Guo, A., Zhou, L., Li, J., Wu, Y., Ma, Z., Armero, A., Issali, A. E., Liu, N., Peng, M., & Yang, Y. (2017). The genome draft of coconut (Cocos nucifera). GigaScience, 6, 1-11.
  98. Xiao, Y., Yang, Y., Cao, H., Fan, H., Ma, Z., Lei, X., Mason, A. S., Xia, Z., & Huang, X. (2012). Efficient isolation of high quality RNA from tropical palms for RNA-seq analysis. Plant Omics, 5, 584-589.
  99. Yang, Y., Bocs, S., Fan, H., Armero, A., Baudouin, L., Xu, P., Xu, J., This, D., Hamelin, C., Iqbal, A., Qadri, R., Zhou, L., Li, J., Wu, Y. I., Ma, Z., Issali, A. E., Rivallan, R., Liu, N. A., Xia, W., … Xiao, Y. (2021). Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance. Communications Biology, 4, 105.
  100. Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24, 1586-1591.
  101. Ye, C., Hill, C. M., Wu, S., Ruan, J., & Ma, Z. S. (2016). DBG2OLC: Efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Scientific Reports, 6, 31900.
  102. Zhang, Q.-J., & Gao, L.-Z. (2017). Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3: Genes|genomes|genetics, 7, 1875-1885.
  103. Zhao, M., & Ma, J. (2013). Co-evolution of plant LTR-retrotransposons and their host genomes. Protein & Cell, 4, 493-501.
  104. Zheng, G. X. Y., Lau, B. T., Schnall-Levin, M., Jarosz, M., Bell, J. M., Hindson, C. M., Kyriazopoulou-Panagiotopoulou, S., Masquelier, D. A., Merrill, L., Terry, J. M., Mudivarti, P. A., Wyatt, P. W., Bharadwaj, R., Makarewicz, A. J., Li, Y., Belgrader, P., Price, A. D., Lowe, A. J., Marks, P., … Ji, H. P. (2016). Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nature Biotechnology, 34, 303. Retrieved from https://www.nature.com/articles/nbt.3432#supplementary-information

Grants

  1. 1630152017019/the fundamental Scientific Research Funds for Chinese Academy of Tropical Agriculture Sciences
  2. 16301520190011/the fundamental Scientific Research Funds for Chinese Academy of Tropical Agriculture Sciences
  3. 17CXTD-14/Central Public-interest Scientific Institution Basal Research Fund for Innovative Research Team Program of CATAS
  4. 17CXTD-28/Central Public-interest Scientific Institution Basal Research Fund for Innovative Research Team Program of CATAS
  5. ZDKJ201817-3/Hainan Major Research Fund of science and technology

MeSH Term

Areca
Chromosomes
Genome
Genomics
Phylogeny
Plant Breeding

Word Cloud