Dysregulation of brain and choroid plexus cell types in severe COVID-19.

Andrew C Yang, Fabian Kern, Patricia M Losada, Maayan R Agam, Christina A Maat, Georges P Schmartz, Tobias Fehlmann, Julian A Stein, Nicholas Schaum, Davis P Lee, Kruti Calcuttawala, Ryan T Vest, Daniela Berdnik, Nannan Lu, Oliver Hahn, David Gate, M Windy McNerney, Divya Channappa, Inma Cobos, Nicole Ludwig, Walter J Schulz-Schaeffer, Andreas Keller, Tony Wyss-Coray
Author Information
  1. Andrew C Yang: Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA. ORCID
  2. Fabian Kern: Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany. ORCID
  3. Patricia M Losada: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  4. Maayan R Agam: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  5. Christina A Maat: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  6. Georges P Schmartz: Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
  7. Tobias Fehlmann: Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany. ORCID
  8. Julian A Stein: Institute for Neuropathology, Saarland University Hospital and Medical Faculty of Saarland University, Homburg, Germany.
  9. Nicholas Schaum: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  10. Davis P Lee: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  11. Kruti Calcuttawala: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  12. Ryan T Vest: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  13. Daniela Berdnik: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  14. Nannan Lu: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  15. Oliver Hahn: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  16. David Gate: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. ORCID
  17. M Windy McNerney: Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA.
  18. Divya Channappa: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  19. Inma Cobos: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
  20. Nicole Ludwig: Department of Human Genetics, Saarland University, Homburg, Germany.
  21. Walter J Schulz-Schaeffer: Institute for Neuropathology, Saarland University Hospital and Medical Faculty of Saarland University, Homburg, Germany. ORCID
  22. Andreas Keller: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. andreas.keller@ccb.uni-saarland.de. ORCID
  23. Tony Wyss-Coray: ChEM-H, Stanford University, Stanford, CA, USA. twc@stanford.edu. ORCID

Abstract

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans and linked to cognitive function-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.

References

  1. Science. 2014 Oct 3;346(6205):89-93 [PMID: 25147279]
  2. Cell. 2017 Jun 15;169(7):1276-1290.e17 [PMID: 28602351]
  3. Genome Res. 2016 Dec;26(12):1721-1729 [PMID: 27852649]
  4. J Neurosci. 2018 Mar 21;38(12):3060-3080 [PMID: 29487124]
  5. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  6. Cell Stem Cell. 2020 Dec 3;27(6):951-961.e5 [PMID: 33113348]
  7. Lancet Respir Med. 2020 May;8(5):475-481 [PMID: 32105632]
  8. Nat Commun. 2020 Aug 6;11(1):3924 [PMID: 32764665]
  9. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  10. Bioinformatics. 2021 Jun 16;37(10):1465-1467 [PMID: 33017003]
  11. BMC Bioinformatics. 2013 Apr 15;14:128 [PMID: 23586463]
  12. Nat Med. 2020 Jan;26(1):131-142 [PMID: 31932797]
  13. Acta Neuropathol Commun. 2020 Feb 18;8(1):19 [PMID: 32070434]
  14. Sci Rep. 2021 Mar 23;11(1):6078 [PMID: 33758256]
  15. Cell. 2020 Oct 1;183(1):16-27.e1 [PMID: 32882182]
  16. Sci Immunol. 2020 Jul 10;5(49): [PMID: 32651212]
  17. Cell Rep. 2019 Apr 23;27(4):1293-1306.e6 [PMID: 31018141]
  18. Nature. 2020 Jul;583(7816):425-430 [PMID: 32612231]
  19. Nat Commun. 2018 Jul 10;9(1):2667 [PMID: 29991676]
  20. Cell Res. 2021 Mar;31(3):272-290 [PMID: 33473155]
  21. Nat Rev Neurol. 2017 Jul;13(7):420-433 [PMID: 28524175]
  22. Nature. 2019 Jun;570(7761):332-337 [PMID: 31042697]
  23. J Exp Med. 2021 Mar 1;218(3): [PMID: 33433624]
  24. Annu Rev Virol. 2014 Nov 1;1:261-283 [PMID: 25599080]
  25. Nat Biotechnol. 2015 Jan;33(1):102-6 [PMID: 25326897]
  26. Cell. 2020 Nov 25;183(5):1340-1353.e16 [PMID: 33096020]
  27. Science. 2016 May 6;352(6286):712-716 [PMID: 27033548]
  28. Nat Neurosci. 2019 Dec;22(12):2087-2097 [PMID: 31768052]
  29. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  30. Nature. 2018 Mar 22;555(7697):524-528 [PMID: 29539641]
  31. Nat Neurosci. 2019 Oct;22(10):1696-1708 [PMID: 31551601]
  32. Nature. 2019 Feb;566(7745):543-547 [PMID: 30747918]
  33. Genome Biol. 2019 Mar 22;20(1):63 [PMID: 30902100]
  34. Gigascience. 2020 Dec 26;9(12): [PMID: 33367645]
  35. Nature. 2020 Jul;583(7817):590-595 [PMID: 32669714]
  36. Ann Clin Transl Neurol. 2020 Nov;7(11):2221-2230 [PMID: 33016619]
  37. Lancet Psychiatry. 2020 Oct;7(10):875-882 [PMID: 32593341]
  38. Cell Stem Cell. 2020 Dec 3;27(6):937-950.e9 [PMID: 33010822]
  39. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  40. Front Genet. 2017 May 23;8:62 [PMID: 28588607]
  41. Nat Neurosci. 2021 Feb;24(2):168-175 [PMID: 33257876]
  42. Nat Methods. 2018 Apr;15(4):255-261 [PMID: 29481549]
  43. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  44. JAMA. 2020 Aug 11;324(6):603-605 [PMID: 32644129]
  45. Neurology. 2020 Aug 25;95(8):e1060-e1070 [PMID: 32482845]
  46. Nature. 2022 Mar;603(7903):885-892 [PMID: 35165441]
  47. Sci Rep. 2020 Apr 28;10(1):7118 [PMID: 32346016]
  48. Front Genet. 2020 Jan 17;10:1331 [PMID: 32010190]
  49. BMC Bioinformatics. 2019 Jan 18;20(1):40 [PMID: 30658573]
  50. Neuron. 2021 Apr 7;109(7):1100-1117.e10 [PMID: 33606969]
  51. Science. 2020 Jan 3;367(6473):83-87 [PMID: 31896716]
  52. Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012 [PMID: 30445434]
  53. Neuron. 2013 Apr 10;78(1):28-48 [PMID: 23583106]
  54. Nat Biotechnol. 2018 Jan;36(1):70-80 [PMID: 29227469]
  55. N Engl J Med. 2020 Jun 4;382(23):2268-2270 [PMID: 32294339]
  56. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  57. Nat Rev Neurosci. 2019 Jan;20(1):19-33 [PMID: 30467385]
  58. Cell. 2020 Dec 10;183(6):1479-1495.e20 [PMID: 33171100]
  59. Lancet Neurol. 2020 Nov;19(11):919-929 [PMID: 33031735]
  60. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  61. Cell. 2020 Jun 25;181(7):1475-1488.e12 [PMID: 32479746]
  62. Acta Neuropathol. 2019 Apr;137(4):619-635 [PMID: 30663001]
  63. Science. 2020 May 29;368(6494):1012-1015 [PMID: 32303590]
  64. Front Immunol. 2020 Jun 10;11:1372 [PMID: 32595654]
  65. Bioinformatics. 2017 Apr 15;33(8):1179-1186 [PMID: 28088763]
  66. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  67. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  68. Science. 2019 May 17;364(6441):685-689 [PMID: 31097668]
  69. Cell Rep. 2020 Mar 31;30(13):4418-4432.e4 [PMID: 32234477]
  70. Nucleic Acids Res. 2020 Jul 2;48(W1):W515-W520 [PMID: 32379325]
  71. Cell. 2021 May 27;184(11):3056-3074.e21 [PMID: 33932339]
  72. Nat Immunol. 2017 Mar 22;18(4):385-392 [PMID: 28323268]
  73. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  74. Lancet Neurol. 2020 Sep;19(9):767-783 [PMID: 32622375]
  75. Nat Methods. 2017 Oct;14(10):959-962 [PMID: 28846090]
  76. Database (Oxford). 2016 Dec 26;2016: [PMID: 28025349]
  77. Nat Commun. 2020 Nov 30;11(1):6077 [PMID: 33257685]
  78. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  79. Sci Transl Med. 2012 Feb 15;4(121):121ps3 [PMID: 22344685]
  80. Nature. 2019 Jul;571(7764):205-210 [PMID: 31270459]
  81. Nucleic Acids Res. 2010 Jan;38(Database issue):D792-9 [PMID: 19906719]
  82. JAMA Neurol. 2020 Jun 1;77(6):683-690 [PMID: 32275288]
  83. Cell Discov. 2020 Oct 20;6:73 [PMID: 33101705]
  84. Neuron. 2016 Jul 20;91(2):260-92 [PMID: 27477017]
  85. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Grants

  1. P30 AG066515/NIA NIH HHS
  2. RF1 AG059694/NIA NIH HHS
  3. T32 AG047126/NIA NIH HHS

MeSH Term

Aged
Aged, 80 and over
Astrocytes
Brain
COVID-19
Cell Nucleus
Choroid Plexus
Female
Humans
Inflammation
Male
Microglia
Middle Aged
Neurons
SARS-CoV-2
Single-Cell Analysis
Transcriptome
Virus Replication