SARS-CoV-2 infection in the mouse olfactory system.

Qing Ye, Jia Zhou, Qi He, Rui-Ting Li, Guan Yang, Yao Zhang, Shu-Jia Wu, Qi Chen, Jia-Hui Shi, Rong-Rong Zhang, Hui-Ming Zhu, Hong-Ying Qiu, Tao Zhang, Yong-Qiang Deng, Xiao-Feng Li, Jian-Feng Liu, Ping Xu, Xiao Yang, Cheng-Feng Qin
Author Information
  1. Qing Ye: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  2. Jia Zhou: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  3. Qi He: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  4. Rui-Ting Li: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  5. Guan Yang: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  6. Yao Zhang: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  7. Shu-Jia Wu: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  8. Qi Chen: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  9. Jia-Hui Shi: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  10. Rong-Rong Zhang: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  11. Hui-Ming Zhu: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  12. Hong-Ying Qiu: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  13. Tao Zhang: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
  14. Yong-Qiang Deng: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China. ORCID
  15. Xiao-Feng Li: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
  16. Jian-Feng Liu: Department of Otorhinolaryngology, China-Japan Friendship Hospital, Beijing, China.
  17. Ping Xu: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China. xuping_bprc@126.com.
  18. Xiao Yang: State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China. yangx@bmi.ac.cn.
  19. Cheng-Feng Qin: State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China. qincf@bmi.ac.cn. ORCID

Abstract

SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice. The sustentacular cells and Bowman's gland cells in the OE were identified as the major target cells of SARS-CoV-2 before invasion into olfactory sensory neurons (OSNs). Remarkably, SARS-CoV-2 infection triggers massive cell death and immune cell infiltration and directly impairs the uniformity of the OE structure. Combined transcriptomic and quantitative proteomic analyses revealed the induction of antiviral and inflammatory responses, as well as the downregulation of olfactory receptor (OR) genes in the OE from the infected animals. Overall, our mouse model recapitulates olfactory dysfunction in COVID-19 patients and provides critical clues for understanding the physiological basis for extrapulmonary manifestations of COVID-19.

References

  1. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  2. Int Forum Allergy Rhinol. 2020 Aug;10(8):944-950 [PMID: 32301284]
  3. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  4. Chem Senses. 2020 May 22;: [PMID: 32441744]
  5. Int Forum Allergy Rhinol. 2020 Jul;10(7):806-813 [PMID: 32279441]
  6. Cell Stem Cell. 2017 Dec 7;21(6):775-790.e9 [PMID: 29174333]
  7. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  8. Comp Biochem Physiol B Biochem Mol Biol. 1995 Nov;112(3):471-9 [PMID: 8529023]
  9. J Vis Exp. 2014 Aug 25;(90):e51804 [PMID: 25177842]
  10. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  11. Methods Mol Biol. 2018;1820:289-388 [PMID: 29884953]
  12. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  13. Clin Infect Dis. 2020 Jul 28;71(15):889-890 [PMID: 32215618]
  14. Science. 2020 Mar 13;367(6483):1260-1263 [PMID: 32075877]
  15. Med Mal Infect. 2020 Aug;50(5):436-439 [PMID: 32305563]
  16. Behav Brain Res. 2004 Apr 2;150(1-2):1-7 [PMID: 15033273]
  17. Nat Neurosci. 2007 Jun;10(6):720-6 [PMID: 17468753]
  18. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  19. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  20. Protein Expr Purif. 2016 Oct;126:69-76 [PMID: 27260967]
  21. JAMA. 2020 May 26;323(20):2089-2090 [PMID: 32320008]
  22. J Otolaryngol Head Neck Surg. 2020 May 4;49(1):26 [PMID: 32366299]
  23. Int Forum Allergy Rhinol. 2021 Feb 4;: [PMID: 33539667]
  24. Science. 2020 Nov 13;370(6518):861-865 [PMID: 33082294]
  25. Nucleic Acids Res. 2019 Jan 8;47(D1):D1211-D1217 [PMID: 30252093]
  26. Open Biol. 2018 Dec;8(12):180208 [PMID: 30977439]
  27. Protein Expr Purif. 2015 Dec;116:120-6 [PMID: 26318238]
  28. Cell Host Microbe. 2020 Jul 8;28(1):124-133.e4 [PMID: 32485164]
  29. J Neurosci. 2008 May 7;28(19):4938-48 [PMID: 18463247]
  30. J Gen Virol. 2002 Sep;83(Pt 9):2109-2116 [PMID: 12185263]
  31. Chem Senses. 2007 Mar;32(3):285-92 [PMID: 17237476]
  32. J Biol Chem. 2012 Jun 22;287(26):22287-94 [PMID: 22570474]
  33. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  34. Nature. 2020 Jul;583(7818):834-838 [PMID: 32408338]
  35. J Neurochem. 2020 Sep;155(2):137-153 [PMID: 31811775]
  36. ACS Chem Neurosci. 2020 Jul 1;11(13):1909-1913 [PMID: 32525657]
  37. Cell Stem Cell. 2019 Oct 3;25(4):501-513.e5 [PMID: 31523027]
  38. Nature. 2007 Nov 22;450(7169):503-8 [PMID: 17989651]
  39. PLoS One. 2016 Jul 18;11(7):e0159033 [PMID: 27428110]
  40. Dev Cell. 2011 Aug 16;21(2):193-215 [PMID: 21839917]
  41. Nature. 2021 Jan;589(7843):603-607 [PMID: 33166988]
  42. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  43. J Proteome Res. 2009 Aug;8(8):3944-50 [PMID: 19566079]
  44. Nat Biotechnol. 2014 Aug;32(8):795-803 [PMID: 25093887]
  45. Exp Neurol. 2017 Jan;287(Pt 3):395-408 [PMID: 27264358]
  46. Signal Transduct Target Ther. 2020 Dec 4;5(1):283 [PMID: 33277466]
  47. Nat Med. 2020 Jul;26(7):1037-1040 [PMID: 32393804]
  48. Sci Adv. 2020 Jul 31;6(31): [PMID: 32937591]
  49. Brain Behav Immun. 2020 Oct;89:579-586 [PMID: 32629042]
  50. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  51. Neuron. 2020 Jul 22;107(2):219-233 [PMID: 32640192]
  52. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  53. Handb Clin Neurol. 2019;164:47-65 [PMID: 31604563]
  54. J Virol. 2012 Apr;86(7):3975-84 [PMID: 22278228]
  55. Chem Senses. 2002 Oct;27(8):691-701 [PMID: 12379593]

Grants

  1. 81925025/National Natural Science Foundation of China (National Science Foundation of China)
  2. 2019RU040/Chinese Academy of Medical Sciences (CAMS)