New Computational Approach for Peptide Vaccine Design Against SARS-COV-2.

Subhamoy Biswas, Smarajit Manna, Ashesh Nandy, Subhash C Basak
Author Information
  1. Subhamoy Biswas: Department of Electrical Engineering, Jadavpur University, Kolkata, 700032 India. ORCID
  2. Smarajit Manna: Jagadis Bose National Science Talent Search, Kolkata, 700107 India.
  3. Ashesh Nandy: Centre for Interdisciplinary Research and Education, Kolkata, 700068 India.
  4. Subhash C Basak: Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812 USA.

Abstract

The design for vaccines using in silico analysis of genomic data of different viruses has taken many different paths, but lack of any precise computational approach has constrained them to alignment methods and some alignment-free techniques. In this work, a precise computational approach has been established wherein two new mathematical parameters have been suggested to identify the highly conserved and surface-exposed regions which are spread over a large region of the surface protein of the virus so that one can determine possible peptide vaccine candidates from those regions. The first parameter, , is the sum of the normalized values of the measure of surface accessibility and the normalized measure of conservativeness, and the second parameter is the area of a triangle formed by a mathematical model named 2D Polygon Representation. This method has been, therefore, used to determine possible vaccine targets against SARS-CoV-2 by considering its surface-situated spike glycoprotein. The results of this model have been verified by a parallel analysis using the older approach of manually estimating the graphs describing the variation of conservativeness and surface-exposure across the protein sequence. Furthermore, the working of the method has been tested by applying it to find out peptide vaccine candidates for Zika and Hendra viruses respectively. A satisfactory consistency of the model results with pre-established results for both the test cases shows that this in silico alignment-free analysis proposed by the model is suitable not only to determine vaccine targets against SARS-CoV-2 but also ready to extend against other viruses.

Keywords

References

  1. J Comput Biol. 2005 Apr;12(3):355-69 [PMID: 15857247]
  2. Microb Pathog. 2020 Aug;145:104236 [PMID: 32376359]
  3. Asian Pac J Trop Med. 2016 Sep;9(9):844-850 [PMID: 27633296]
  4. In Silico Biol. 2010;10(5-6):235-46 [PMID: 22430357]
  5. Cancer Inform. 2016 Jun 01;15(Suppl 1):1-16 [PMID: 27279731]
  6. PLoS Pathog. 2011 Dec;7(12):e1002344 [PMID: 22241978]
  7. Curr Opin Virol. 2016 Apr;17:116-125 [PMID: 27039875]
  8. PLoS One. 2012;7(7):e40749 [PMID: 22844409]
  9. Vaccine. 2014 May 30;32(26):3336-40 [PMID: 23830976]
  10. Biomed Res Int. 2020 May 11;2020:2683286 [PMID: 32461973]
  11. Nat Rev Drug Discov. 2007 May;6(5):404-14 [PMID: 17473845]
  12. In Silico Biol. 2009;9(3):77-87 [PMID: 19795567]
  13. BMC Bioinformatics. 2008 Dec 02;9:514 [PMID: 19055730]
  14. Curr Pharm Des. 2010;16(28):3149-57 [PMID: 20687873]
  15. Egypt J Med Hum Genet. 2020;21(1):35 [PMID: 38624351]
  16. Vaccine. 2001 Mar 21;19(17-19):2688-91 [PMID: 11257410]
  17. Genome Med. 2015 Nov 20;7:119 [PMID: 26589500]
  18. J Immunol Methods. 2015 Jul;422:28-34 [PMID: 25862607]
  19. Infect Drug Resist. 2020 Aug 25;13:3007-3022 [PMID: 32943888]
  20. Proteins. 2004 Sep 1;56(4):753-67 [PMID: 15281128]
  21. Vaccines (Basel). 2014 Jul 02;2(3):515-36 [PMID: 26344743]
  22. Curr Top Med Chem. 2018;18(26):2202-2208 [PMID: 30417788]
  23. Nucleic Acids Res. 2019 Jan 8;47(D1):D339-D343 [PMID: 30357391]
  24. Proc (Bayl Univ Med Cent). 2005 Jan;18(1):21-5 [PMID: 16200144]
  25. Comput Biol Chem. 2017 Jun;68:143-152 [PMID: 28342423]
  26. Sci Rep. 2016 Dec 09;6:37313 [PMID: 27934901]
  27. PLoS Biol. 2011 Feb 01;9(2):e1001014 [PMID: 21304918]
  28. BMC Bioinformatics. 2013;14 Suppl 4:S3 [PMID: 23514199]
  29. J Proteome Res. 2020 Nov 6;19(11):4576-4586 [PMID: 32551648]
  30. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]

Word Cloud

Created with Highcharts 10.0.0analysisvaccinemodelsilicovirusesapproachdetermineSARS-CoV-2resultsdesignvaccinesusingdifferentprecisecomputationalalignment-freemathematicalregionssurfaceproteinpossiblepeptidecandidatesparameternormalizedmeasureconservativenessmethodtargetssequencePeptidegenomicdatatakenmanypathslackconstrainedalignmentmethodstechniquesworkestablishedwhereintwonewparameterssuggestedidentifyhighlyconservedsurface-exposedspreadlargeregionvirusonecanfirstsumvaluesaccessibilitysecondareatriangleformednamed2DPolygonRepresentationthereforeusedconsideringsurface-situatedspikeglycoproteinverifiedparalleloldermanuallyestimatinggraphsdescribingvariationsurface-exposureacrossFurthermoreworkingtestedapplyingfindZikaHendrarespectivelysatisfactoryconsistencypre-establishedtestcasesshowsproposedsuitablealsoreadyextendNewComputationalApproachVaccineDesignSARS-COV-2Alignment-freedrugViralepidemics

Similar Articles

Cited By