The strand-biased transcription of SARS-CoV-2 and unbalanced inhibition by remdesivir.

Yan Zhao, Jing Sun, Yunfei Li, Zhengxuan Li, Yu Xie, Ruoqing Feng, Jincun Zhao, Yuhui Hu
Author Information
  1. Yan Zhao: Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
  2. Jing Sun: State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, Guangdong, China.
  3. Yunfei Li: Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
  4. Zhengxuan Li: Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
  5. Yu Xie: Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
  6. Ruoqing Feng: Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
  7. Jincun Zhao: State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, Guangdong, China.
  8. Yuhui Hu: Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, causes the coronavirus disease 19 pandemic. During the viral replication and transcription, the RNA-dependent RNA polymerase "jumps" along the genome template, resulting in discontinuous negative-stranded transcripts. Although the sense-mRNA architectures of SARS-CoV-2 were reported, its negative strand was unexplored. Here, we deeply sequenced both strands of RNA and found SARS-CoV-2 transcription is strongly biased to form the sense strand with variable transcription efficiency for different genes. During negative strand synthesis, numerous non-canonical fusion transcripts are also formed, driven by 3-15 nt sequence homology scattered along the genome but more prone to be inhibited by SARS-CoV-2 RNA polymerase inhibitor remdesivir. The drug also represses more of the negative than the positive strand synthesis as supported by a mathematic simulation model and experimental quantifications. Overall, this study opens new sights into SARS-CoV-2 biogenesis and may facilitate the antiviral vaccine development and drug design.

Keywords

References

  1. J Virol. 2004 Jan;78(2):980-94 [PMID: 14694129]
  2. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  3. ACS Cent Sci. 2020 May 27;6(5):672-683 [PMID: 32483554]
  4. J Proteome Res. 2020 Nov 6;19(11):4690-4697 [PMID: 32692185]
  5. Antimicrob Agents Chemother. 2020 Dec 16;65(1): [PMID: 33122171]
  6. J Med Chem. 2017 Mar 9;60(5):1648-1661 [PMID: 28124907]
  7. N Engl J Med. 2020 Apr 30;382(18):1677-1679 [PMID: 32109012]
  8. Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 [PMID: 12824337]
  9. J Virol. 2003 Jan;77(2):1175-83 [PMID: 12502834]
  10. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  11. Science. 2020 Jun 26;368(6498):1499-1504 [PMID: 32358203]
  12. Methods Mol Biol. 2015;1282:1-23 [PMID: 25720466]
  13. J Biol Chem. 2020 May 15;295(20):6785-6797 [PMID: 32284326]
  14. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]
  15. Annu Rev Virol. 2015 Nov;2(1):265-88 [PMID: 26958916]
  16. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  17. Antiviral Res. 2020 Jun;178:104793 [PMID: 32283108]
  18. J Virol. 2008 Apr;82(8):3882-93 [PMID: 18272586]
  19. Emerg Microbes Infect. 2020 Dec;9(1):221-236 [PMID: 31987001]
  20. Genome Med. 2020 Jul 28;12(1):68 [PMID: 32723359]
  21. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  22. Cell Res. 2020 Mar;30(3):269-271 [PMID: 32020029]
  23. Viruses. 2020 Jan 07;12(1): [PMID: 31936115]
  24. Mol Cell. 2019 Apr 4;74(1):196-211.e11 [PMID: 30799147]
  25. J Virol. 2005 Feb;79(4):2506-16 [PMID: 15681451]
  26. mBio. 2018 Mar 6;9(2): [PMID: 29511076]
  27. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6771-6776 [PMID: 32054787]
  28. Viruses. 2009 Dec;1(3):895-919 [PMID: 21994575]
  29. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  30. Nature. 2020 Nov;587(7833):270-274 [PMID: 32726801]
  31. J Virol. 1996 May;70(5):2720-9 [PMID: 8627745]
  32. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12056-61 [PMID: 10518575]
  33. J Gen Virol. 2003 Sep;84(Pt 9):2305-2315 [PMID: 12917450]
  34. Nat Commun. 2020 Jan 10;11(1):222 [PMID: 31924756]
  35. J Virol. 1991 Jan;65(1):320-5 [PMID: 1985203]
  36. Front Microbiol. 2019 Aug 09;10:1852 [PMID: 31447826]
  37. J Virol. 2002 Feb;76(3):1293-308 [PMID: 11773405]
  38. J Virol. 2011 May;85(10):4963-73 [PMID: 21389138]
  39. Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8094-8103 [PMID: 32198201]
  40. Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34 [PMID: 25199790]
  41. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  42. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  43. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  44. Virology. 1997 Aug 18;235(1):1-9 [PMID: 9300032]
  45. Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):637-42 [PMID: 11805321]
  46. Nature. 2006 May 4;441(7089):101-5 [PMID: 16625202]
  47. Cell Rep. 2020 Jul 21;32(3):107940 [PMID: 32668216]
  48. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  49. EMBO J. 2001 Dec 17;20(24):7220-8 [PMID: 11742998]