Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis.

Sunil Shrestha, Vinod Kumar Reddy Lekkala, Prabha Acharya, Darshita Siddhpura, Moo-Yeal Lee
Author Information
  1. Sunil Shrestha: Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States.
  2. Vinod Kumar Reddy Lekkala: Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States.
  3. Prabha Acharya: Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States.
  4. Darshita Siddhpura: Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Ave, Cleveland, Ohio 44115, United States.
  5. Moo-Yeal Lee: Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States. ORCID

Abstract

Three-dimensional (3D) cell culture in vitro has proven to be more physiologically relevant than two-dimensional (2D) culture of cell monolayers, thus more predictive in assessing efficacy and toxicity of compounds. There have been several 3D cell culture techniques developed, which include spheroid and multicellular tissue cultures. Cell spheroids have been generated from single or multiple cell types cultured in ultralow attachment (ULA) well plates and hanging droplet plates. In general, cell spheroids are formed in a relatively short period of culture, in the absence of extracellular matrices (ECMs), via gravity-driven self-aggregation, thus having limited ability to self-organization in layered structure. On the other hand, multicellular tissue cultures including miniature tissues derived from pluripotent stem cells and adult stem cells (a.k.a. 'organoids') and 3D bioprinted tissue constructs require biomimetic hydrogels or ECMs and show highly ordered structure due to spontaneous self-organization of cells during differentiation and maturation processes. In this short review article, we summarize traditional methods of spheroid and multicellular tissue cultures as well as their technical challenges, and introduce how droplet-based, miniature 3D bioprinting ('microarray 3D bioprinting') can be used to improve assay throughput and reproducibility for high-throughput, predictive screening of compounds. Several platforms including a micropillar chip and a 384-pillar plate developed to facilitate miniature spheroid and tissue cultures via microarray 3D bioprinting are introduced. We excluded microphysiological systems (MPSs) in this article although they are important tissue models to simulate multiorgan interactions.

Keywords

References

  1. Nat Biomed Eng. 2017 Dec;1(12):939-956 [PMID: 31015708]
  2. Nat Genet. 2002 Dec;32 Suppl:526-32 [PMID: 12454649]
  3. Nat Protoc. 2014 Feb;9(2):396-409 [PMID: 24457331]
  4. PLoS One. 2016 Jul 07;11(7):e0158674 [PMID: 27387377]
  5. Exp Cell Res. 2018 Sep 15;370(2):680-691 [PMID: 30048616]
  6. J Tissue Eng. 2017 Apr 24;8:2041731417704428 [PMID: 28616152]
  7. Clin Microbiol Rev. 2009 Oct;22(4):611-33 [PMID: 19822891]
  8. Acta Biomater. 2017 Jul 15;57:26-46 [PMID: 28501712]
  9. Biomaterials. 2016 Sep;102:20-42 [PMID: 27318933]
  10. Nat Methods. 2019 Mar;16(3):255-262 [PMID: 30742039]
  11. SLAS Discov. 2018 Jul;23(6):574-584 [PMID: 29673279]
  12. iScience. 2020 Sep 28;23(10):101621 [PMID: 33089109]
  13. Microsyst Nanoeng. 2020 Oct 5;6:76 [PMID: 34567686]
  14. Drug Discov Today. 2016 Aug;21(8):1257-71 [PMID: 27086009]
  15. Cell Stem Cell. 2020 Mar 5;26(3):309-329 [PMID: 32142662]
  16. Cell Rep. 2017 Dec 5;21(10):2661-2670 [PMID: 29212014]
  17. Adv Healthc Mater. 2018 Jan;7(1): [PMID: 29193879]
  18. Nat Methods. 2005 Feb;2(2):119-25 [PMID: 15782209]
  19. PLoS One. 2015 Sep 01;10(9):e0136681 [PMID: 26325298]
  20. Proc Natl Acad Sci U S A. 2008 Jan 8;105(1):59-63 [PMID: 18160535]
  21. Nature. 2019 Oct;574(7776):112-116 [PMID: 31554966]
  22. Toxicol In Vitro. 2020 Jun;65:104765 [PMID: 31923580]
  23. Trends Biotechnol. 2015 Jul;33(7):395-400 [PMID: 25978871]
  24. Biotechnol Adv. 2011 Nov-Dec;29(6):997-1003 [PMID: 21920429]
  25. Elife. 2020 Nov 03;9: [PMID: 33138918]
  26. Biofabrication. 2012 Sep;4(3):035001 [PMID: 22728820]
  27. Biotechnol J. 2018 Jan;13(1): [PMID: 29058365]
  28. J Biomech Eng. 2009 Mar;131(3):035001 [PMID: 19154078]
  29. Lab Chip. 2018 Oct 9;18(20):3172-3183 [PMID: 30204191]
  30. Cell. 2015 Jul 16;162(2):246-257 [PMID: 26186186]
  31. J Vis Exp. 2017 Mar 27;(121): [PMID: 28448014]
  32. Anal Biochem. 2008 Dec 1;383(1):116-21 [PMID: 18722996]
  33. Small. 2012 Jul 9;8(13):2091-8 [PMID: 22511323]
  34. Nat Commun. 2014 May 06;5:3739 [PMID: 24799042]
  35. Cells. 2019 Dec 12;8(12): [PMID: 31842346]
  36. Stem Cell Reports. 2018 Jan 9;10(1):300-313 [PMID: 29233554]
  37. Sci Adv. 2020 Jul 15;6(29):eaba4174 [PMID: 32743068]
  38. Science. 2019 Jun 07;364(6444):956-959 [PMID: 31171692]
  39. Development. 2017 Mar 15;144(6):958-962 [PMID: 28292841]
  40. Sci Adv. 2018 Apr 27;4(4):eaas8998 [PMID: 29719868]
  41. Nat Rev Mol Cell Biol. 2020 Oct;21(10):571-584 [PMID: 32636524]
  42. Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):983-7 [PMID: 15657119]
  43. Bioengineering (Basel). 2018 Jun 21;5(3): [PMID: 29933623]
  44. Sci Rep. 2018 May 1;8(1):6837 [PMID: 29717201]
  45. Nature. 2001 May 3;411(6833):107-10 [PMID: 11333987]
  46. Arch Toxicol. 2018 Aug;92(8):2501-2516 [PMID: 29974144]
  47. Sci Rep. 2017 Apr 26;7(1):1203 [PMID: 28446763]
  48. Biomicrofluidics. 2011 Jun;5(2):22207 [PMID: 21799713]
  49. Nat Commun. 2020 Jan 10;11(1):215 [PMID: 31924806]
  50. Toxicol In Vitro. 2018 Aug;50:147-159 [PMID: 29501531]
  51. Expert Opin Biol Ther. 2012 Oct;12(10):1347-60 [PMID: 22784238]
  52. Biotechnol Prog. 2018 Mar;34(2):445-454 [PMID: 29240313]
  53. Cell Stem Cell. 2018 Jun 01;22(6):929-940.e4 [PMID: 29779890]
  54. Trends Biotechnol. 2021 Aug;39(8):774-787 [PMID: 33279281]
  55. SLAS Technol. 2019 Aug;24(4):420-428 [PMID: 31225974]
  56. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Apr 5;787(1):19-27 [PMID: 12659730]
  57. Sci Rep. 2015 Sep 14;5:13987 [PMID: 26365200]

Grants

  1. R01 ES025779/NIEHS NIH HHS
  2. R44 TR003491/NCATS NIH HHS
  3. UH3 DK119982/NIDDK NIH HHS

MeSH Term

Bioprinting
Cell Culture Techniques
Hydrogels
Reproducibility of Results
Spheroids, Cellular

Chemicals

Hydrogels

Word Cloud

Created with Highcharts 10.0.03Dculturetissuecellspheroidculturesbioprintingmulticellularminiaturecellshigh-throughputthuspredictivecompoundsdevelopedspheroidswellplatesshortECMsviaself-organizationstructureincludingstemaarticlescreeningmicroarrayThree-dimensionalvitroprovenphysiologicallyrelevanttwo-dimensional2DmonolayersassessingefficacytoxicityseveraltechniquesincludeCellgeneratedsinglemultipletypesculturedultralowattachmentULAhangingdropletgeneralformedrelativelyperiodabsenceextracellularmatricesgravity-drivenself-aggregationlimitedabilitylayeredhandtissuesderivedpluripotentadultk'organoids'bioprintedconstructsrequirebiomimetichydrogelsshowhighlyorderedduespontaneousdifferentiationmaturationprocessesreviewsummarizetraditionalmethodstechnicalchallengesintroducedroplet-based'microarraybioprinting'canusedimproveassaythroughputreproducibilitySeveralplatformsmicropillarchip384-pillarplatefacilitateintroducedexcludedmicrophysiologicalsystemsMPSsalthoughimportantmodelssimulatemultiorganinteractionsRecentadvancesanalysisorganoid

Similar Articles

Cited By