Evaluation of the offline-coupled GFSv15-FV3-CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States.

Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C Campbell, Jeff Mcqueen, Havala O T Pye, Benjamin N Murphy, Daiwen Kang
Author Information
  1. Xiaoyang Chen: Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
  2. Yang Zhang: Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
  3. Kai Wang: Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
  4. Daniel Tong: Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030, USA.
  5. Pius Lee: Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA.
  6. Youhua Tang: Center for Spatial Information Science and System, George Mason University, Fairfax, VA 22030, USA.
  7. Jianping Huang: National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction/Environmental Modeling Center, College Park, MD 20740, USA.
  8. Patrick C Campbell: Center for Spatial Information Science and System, George Mason University, Fairfax, VA 22030, USA.
  9. Jeff Mcqueen: National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction/Environmental Modeling Center, College Park, MD 20740, USA.
  10. Havala O T Pye: Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
  11. Benjamin N Murphy: Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
  12. Daiwen Kang: Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.

Abstract

As a candidate for the next-generation National Air Quality Forecast Capability (NAQFC), the meteorological forecast from the Global Forecast System with the new Finite Volume Cube-Sphere dynamical core (GFS-FV3) will be applied to drive the chemical evolution of gases and particles described by the Community Multiscale Air Quality modeling system. CMAQv5.0.2, a historical version of CMAQ, has been coupled with the North American Mesoscale Forecast System (NAM) model in the current operational NAQFC. An experimental version of the NAQFC based on the offline-coupled GFS-FV3 version 15 with CMAQv5.0.2 modeling system (GFSv15-CMAQv5.0.2) has been developed by the National Oceanic and Atmospheric Administration (NOAA) to provide real-time air quality forecasts over the contiguous United States (CONUS) since 2018. In this work, comprehensive region-specific, time-specific, and categorical evaluations are conducted for meteorological and chemical forecasts from the offline-coupled GFSv15-CMAQv5.0.2 for the year 2019. The forecast system shows good overall performance in forecasting meteorological variables with the annual mean biases of -0.2 °C for temperature at 2 m, 0.4% for relative humidity at 2 m, and 0.4 m s for wind speed at 10 m compared to the METeorological Aerodrome Reports (METAR) dataset. Larger biases occur in seasonal and monthly mean forecasts, particularly in spring. Although the monthly accumulated precipitation forecasts show generally consistent spatial distributions with those from the remote-sensing and ensemble datasets, moderate-to-large biases exist in hourly precipitation forecasts compared to the Clean Air Status and Trends Network (CASTNET) and METAR. While the forecast system performs well in forecasting ozone (O) throughout the year and fine particles with a diameter of 2.5 μm or less (PM) for warm months (May-September), it significantly overpredicts annual mean concentrations of PM. This is due mainly to the high predicted concentrations of fine fugitive and coarse-mode particle components. Underpredictions in the southeastern US and California during summer are attributed to missing sources and mechanisms of secondary organic aerosol formation from biogenic volatile organic compounds (VOCs) and semivolatile or intermediate-volatility organic compounds. This work demonstrates the ability of FV3-based GFS in driving the air quality forecasting. It identifies possible underlying causes for systematic region- and time-specific model biases, which will provide a scientific basis for further development of the next-generation NAQFC.

References

  1. Atmos Environ (1994). 2019 Mar 15;201:62-72 [PMID: 33981178]
  2. J Air Waste Manag Assoc. 2015 Oct;65(10):1206-16 [PMID: 26091206]
  3. Geosci Model Dev. 2019 Jul 18;12(7):3071-3083 [PMID: 32206207]
  4. Geosci Model Dev. 2016;9(5):1905-1919 [PMID: 29652411]
  5. Atmos Chem Phys. 2017;17(1):343-369 [PMID: 30147709]
  6. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6641-6646 [PMID: 30886090]
  7. Geophys Res Lett. 2016 Apr 28;43(8):4017-4025 [PMID: 27378820]
  8. Atmos Chem Phys. 2018 Jan 12;18(1):357-370 [PMID: 29963078]
  9. Environ Sci Technol. 2010 Nov 15;44(22):8553-60 [PMID: 20883028]
  10. J Air Waste Manag Assoc. 2017 May;67(5):582-598 [PMID: 27960634]
  11. Environ Sci Technol. 2017 Feb 7;51(3):1458-1466 [PMID: 28051851]
  12. J Air Waste Manag Assoc. 2016 Jun;66(6):576-96 [PMID: 26889915]
  13. Geosci Model Dev. 2021 May 20;14:2867-2897 [PMID: 34676058]
  14. Environ Sci Technol. 2012 Jan 3;46(1):331-9 [PMID: 22107341]
  15. Environ Sci Technol. 2018 Aug 21;52(16):9254-9265 [PMID: 30005158]
  16. J Adv Model Earth Syst. 2019 Oct 24;11(9):2934-2957 [PMID: 33747353]
  17. Atmos Chem Phys. 2018;18(17):12613-12637 [PMID: 30853976]
  18. Geosci Model Dev. 2019;12(10):4409-4424 [PMID: 31844504]
  19. Environ Sci Technol. 2015 Dec 15;49(24):14195-203 [PMID: 26544021]
  20. Environ Sci Technol. 2015 Aug 4;49(15):9203-11 [PMID: 26151227]
  21. Atmos Chem Phys. 2017;17:11107-11133 [PMID: 32038726]
  22. Environ Sci Technol. 2013 Oct 1;47(19):11056-64 [PMID: 24024583]
  23. Environ Sci Pollut Res Int. 2017 Mar;24(7):6426-6445 [PMID: 28054264]
  24. J Air Waste Manag Assoc. 2005 Dec;55(12):1782-96 [PMID: 16408683]
  25. Environ Sci Pollut Res Int. 2019 Jun;26(17):17066-17079 [PMID: 30997641]
  26. J Adv Model Earth Syst. 2018;10(7):1571-1586 [PMID: 31666920]
  27. Science. 2001 Jan 19;291(5503):471-4 [PMID: 11161198]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.020forecastsAirForecastNAQFCsystembiasesmnext-generationNationalQualitymeteorologicalforecastversionoffline-coupledforecastingmeanorganicCapabilitySystemGFS-FV3willchemicalparticlesmodelingCMAQv5modelGFSv15-CMAQv5provideairqualitycontiguousUnitedStatesworktime-specificyearannualcomparedMETARmonthlyprecipitationfinePMconcentrationscompoundscandidateGlobalnewFiniteVolumeCube-SpheredynamicalcoreapplieddriveevolutiongasesdescribedCommunityMultiscalehistoricalCMAQcoupledNorthAmericanMesoscaleNAMcurrentoperationalexperimentalbased15developedOceanicAtmosphericAdministrationNOAAreal-timeCONUSsince2018comprehensiveregion-specificcategoricalevaluationsconducted2019showsgoodoverallperformancevariables-0°Ctemperature4%relativehumidity4swindspeed10METeorologicalAerodromeReportsdatasetLargeroccurseasonalparticularlyspringAlthoughaccumulatedshowgenerallyconsistentspatialdistributionsremote-sensingensembledatasetsmoderate-to-largeexisthourlyCleanStatusTrendsNetworkCASTNETperformswellozoneOthroughoutdiameter5μmlesswarmmonthsMay-Septembersignificantlyoverpredictsduemainlyhighpredictedfugitivecoarse-modeparticlecomponentsUnderpredictionssoutheasternUSCaliforniasummerattributedmissingsourcesmechanismssecondaryaerosolformationbiogenicvolatileVOCssemivolatileintermediate-volatilitydemonstratesabilityFV3-basedGFSdrivingidentifiespossibleunderlyingcausessystematicregion-scientificbasisdevelopmentEvaluationGFSv15-FV3-CMAQv5support

Similar Articles

Cited By