Jiaqi Zhang, Dongzi Lin, Kui Li, Xiangming Ding, Lin Li, Yuntao Liu, Dongdong Liu, Jing Lin, Xiangyun Teng, Yizhe Li, Ming Liu, Jian Shen, Xiaodan Wang, Dan He, Yaling Shi, Dawei Wang, Jianhua Xu
The existence of asymptomatic and re-detectable positive coronavirus disease 2019 (COVID-19) patients presents the disease control challenges of COVID-19. Most studies on immune responses in COVID-19 have focused on moderately or severely symptomatic patients; however, little is known about the immune response in asymptomatic and re-detectable positive (RP) patients. Here we performed a comprehensive analysis of the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from 48 COVID-19 patients which included 8 asymptomatic, 13 symptomatic, 15 recovered and 12 RP patients. The weighted gene co-expression network analysis (WGCNA) identified six co-expression modules, of which the turquoise module was positively correlated with the asymptomatic, symptomatic, and recovered COVID-19 patients. The red module positively correlated with symptomatic patients only and the blue and brown modules positively correlated with the RP patients. The analysis by single sample gene set enrichment analysis (ssGSEA) revealed a lower level of IFN response and complement activation in the asymptomatic patients compared with the symptomatic, indicating a weaker immune response of the PBMCs in the asymptomatic patients. In addition, gene set enrichment analysis (GSEA) analysis showed the enrichment of TNFα/NF-κB and influenza infection in the RP patients compared with the recovered patients, indicating a hyper-inflammatory immune response in the PBMC of RP patients. Thus our findings could extend our understanding of host immune response during the progression of COVID-19 disease and assist clinical management and the immunotherapy development for COVID-19.
Physiol Res. 2020 Jul 16;69(3):379-388
[PMID:
32469225]
Sci Rep. 2020 Jul 17;10(1):11887
[PMID:
32681141]
Biol Chem. 2008 Oct;389(10):1307-12
[PMID:
18713017]
JAMA. 2020 Mar 17;323(11):1061-1069
[PMID:
32031570]
Immunity. 2020 Sep 15;53(3):685-696.e3
[PMID:
32783921]
JAMA. 2020 Apr 14;323(14):1406-1407
[PMID:
32083643]
Cell Syst. 2015 Dec 23;1(6):417-425
[PMID:
26771021]
Nat Med. 2020 Jul;26(7):1070-1076
[PMID:
32514174]
Sci Data. 2018 Feb 27;5:180015
[PMID:
29485622]
Lancet. 2020 Feb 15;395(10223):497-506
[PMID:
31986264]
Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3
[PMID:
32320677]
JAMA. 2020 Apr 21;323(15):1502-1503
[PMID:
32105304]
J Med Virol. 2020 Jun;92(6):589-594
[PMID:
32100876]
Nat Med. 2020 Aug;26(8):1200-1204
[PMID:
32555424]
N Engl J Med. 2020 Apr 30;382(18):1708-1720
[PMID:
32109013]
Emerg Microbes Infect. 2020 Dec;9(1):761-770
[PMID:
32228226]
N Engl J Med. 2020 May 28;382(22):2158-2160
[PMID:
32329972]
Protein Cell. 2021 Mar;12(3):230-235
[PMID:
32978728]
Eur J Immunol. 2020 Dec;50(12):2013-2024
[PMID:
33080068]
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
[PMID:
16199517]
Nature. 2009 Nov 5;462(7269):108-12
[PMID:
19847166]
Front Pharmacol. 2020 Oct 07;11:549117
[PMID:
33117157]
BMC Bioinformatics. 2013 Jan 16;14:7
[PMID:
23323831]
Korean J Radiol. 2020 Apr;21(4):505-508
[PMID:
32174053]
Nat Rev Immunol. 2020 Oct;20(10):585-586
[PMID:
32788708]
BMC Bioinformatics. 2008 Dec 29;9:559
[PMID:
19114008]
Nature. 2020 Aug;584(7821):463-469
[PMID:
32717743]
Cell. 2020 Sep 17;182(6):1401-1418.e18
[PMID:
32810439]
Int J Infect Dis. 2020 Dec;101:220-225
[PMID:
33031941]
Nat Rev Immunol. 2020 Jun;20(6):363-374
[PMID:
32346093]
J Pediatr Gastroenterol Nutr. 2020 Aug;71(2):150-152
[PMID:
32452978]
PLoS Pathog. 2020 May 22;16(5):e1008536
[PMID:
32442210]