Single-Cell Transcriptome Profiling Reveals the Suppressive Role of Retinal Neurons in Microglia Activation Under Diabetes Mellitus.

Yuhua Xiao, Xing Hu, Shuxin Fan, Jiawei Zhong, Xinzhi Mo, Xialin Liu, Youjin Hu
Author Information
  1. Yuhua Xiao: Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.
  2. Xing Hu: Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.
  3. Shuxin Fan: Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.
  4. Jiawei Zhong: Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.
  5. Xinzhi Mo: Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.
  6. Xialin Liu: Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.
  7. Youjin Hu: Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China.

Abstract

Diabetic retinopathy, as one of the common complications of diabetes mellitus, is the leading cause of blindness in the working-age population worldwide. The disease is characterized by damage to retinal vasculature, which is associated with the activation of retina microglial and induces chronic neurodegeneration. Previous studies have identified the effects of activated microglial on the retinal neurons, but the cellular and molecular mechanisms underlying microglial activation is largely unknown. Here, we performed scRNA-seq on the retina of non-human primates with diabetes mellitus, and identified cell-type-specific molecular changes of the six major cell types. By identifying the ligand-receptor expression patterns among different cells, we established the interactome of the whole retina. The data showed that TNF-α signal mediated the activation of microglia through an autocrine manner. And we found TGFβ2, which was upregulated in cone dramatically by hyperglycemia, inhibited microglia activation at the early stage of diabetic retinopathy. In summary, our study is the first to profile cell-specific molecular changes and the cell-cell interactome of retina under diabetes mellitus, paving a way to dissect the cellular and molecular mechanisms underlying early-stage diabetic retinopathy.

Keywords

References

  1. J Biol Chem. 2002 Aug 2;277(31):28118-26 [PMID: 12011061]
  2. J Neuroimmune Pharmacol. 2017 Sep;12(3):433-446 [PMID: 28429275]
  3. Biomed Res Int. 2017;2017:1879437 [PMID: 28698867]
  4. Nat Rev Endocrinol. 2021 Apr;17(4):195-206 [PMID: 33469209]
  5. Trends Immunol. 2006 Dec;27(12):552-8 [PMID: 17045842]
  6. Cell. 2019 Feb 21;176(5):1222-1237.e22 [PMID: 30712875]
  7. J Neuroimmunol. 2016 Oct 15;299:130-138 [PMID: 27725111]
  8. Nat Rev Neurol. 2021 Mar;17(3):157-172 [PMID: 33318676]
  9. Invest Ophthalmol Vis Sci. 2021 Mar 1;62(3):30 [PMID: 33749721]
  10. Cell Death Dis. 2020 Jun 2;11(6):415 [PMID: 32488063]
  11. Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3496-3505 [PMID: 28715583]
  12. J Neurosci. 2009 Oct 28;29(43):13435-44 [PMID: 19864556]
  13. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  14. Nat Commun. 2017 May 16;8:15296 [PMID: 28508859]
  15. J Clin Invest. 2020 Aug 3;130(8):4360-4369 [PMID: 32352930]
  16. Sci Transl Med. 2019 Jun 19;11(497): [PMID: 31217334]
  17. Elife. 2019 Jan 22;8: [PMID: 30666961]
  18. Am J Pathol. 2008 May;172(5):1411-8 [PMID: 18403591]
  19. Biochem Biophys Res Commun. 2000 Mar 16;269(2):361-5 [PMID: 10708557]
  20. Nat Neurosci. 2018 Oct;21(10):1359-1369 [PMID: 30258234]
  21. Diabetes. 2010 Nov;59(11):2872-82 [PMID: 20693346]
  22. Cell Tissue Res. 2012 Jan;347(1):291-301 [PMID: 21879289]
  23. Front Immunol. 2020 Nov 06;11:564077 [PMID: 33240260]
  24. Int J Mol Sci. 2018 Jan 01;19(1): [PMID: 29301251]
  25. Nat Commun. 2021 Feb 17;12(1):1088 [PMID: 33597522]
  26. J Diabetes Res. 2015;2015:582060 [PMID: 26137497]
  27. Front Cell Neurosci. 2020 Oct 09;14:576650 [PMID: 33192322]
  28. Diabetes. 2020 May;69(5):981-999 [PMID: 32139595]
  29. Curr Med Chem. 2016;23(26):2908-2928 [PMID: 27281131]
  30. J Neuroinflammation. 2011 Nov 10;8:156 [PMID: 22074460]
  31. Front Cell Dev Biol. 2018 Apr 20;6:28 [PMID: 29732369]
  32. Semin Immunol. 2014 Jun;26(3):253-66 [PMID: 24958609]
  33. Biochim Biophys Acta. 2016 Mar;1862(3):339-51 [PMID: 26524636]
  34. Pathophysiology. 2017 Dec;24(4):229-241 [PMID: 28732591]
  35. Diabetes. 2017 Feb;66(2):261-263 [PMID: 28108606]
  36. Nat Rev Dis Primers. 2016 Mar 17;2:16012 [PMID: 27159554]
  37. J Biol Chem. 2016 Mar 4;291(10):5068-79 [PMID: 26792858]
  38. Semin Ophthalmol. 2016;31(1-2):40-8 [PMID: 26959128]
  39. Cell. 2000 Oct 13;103(2):295-309 [PMID: 11057902]