Platelets contribute to disease severity in COVID-19.

Tessa J Barrett, Seda Bilaloglu, Macintosh Cornwell, Hannah M Burgess, Vitor W Virginio, Kamelia Drenkova, Homam Ibrahim, Eugene Yuriditsky, Yin Aphinyanaphongs, Mark Lifshitz, Feng Xia Liang, Julie Alejo, Grace Smith, Stefania Pittaluga, Amy V Rapkiewicz, Jun Wang, Camelia Iancu-Rubin, Ian Mohr, Kelly Ruggles, Kenneth A Stapleford, Judith Hochman, Jeffrey S Berger
Author Information
  1. Tessa J Barrett: Department of Medicine, New York University Langone Health, New York, New York, USA. ORCID
  2. Seda Bilaloglu: Department of Population Health, New York University Langone Health, New York, New York, USA.
  3. Macintosh Cornwell: Department of Medicine, New York University Langone Health, New York, New York, USA.
  4. Hannah M Burgess: Department of Microbiology, New York University Langone Health, New York, New York, USA.
  5. Vitor W Virginio: Department of Medicine, New York University Langone Health, New York, New York, USA.
  6. Kamelia Drenkova: Department of Medicine, New York University Langone Health, New York, New York, USA.
  7. Homam Ibrahim: Department of Medicine, New York University Langone Health, New York, New York, USA.
  8. Eugene Yuriditsky: Department of Medicine, New York University Langone Health, New York, New York, USA. ORCID
  9. Yin Aphinyanaphongs: Department of Population Health, New York University Langone Health, New York, New York, USA.
  10. Mark Lifshitz: Department of Pathology, New York University Langone Health, New York, New York, USA.
  11. Feng Xia Liang: DART Microscopy Laboratory, New York University Langone Health, New York, New York, USA.
  12. Julie Alejo: Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
  13. Grace Smith: Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
  14. Stefania Pittaluga: Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
  15. Amy V Rapkiewicz: Department of Pathology, NYU Winthrop Hospital, New York University Langone Health, Mineola, New York, USA.
  16. Jun Wang: Department of Pathology, New York University Langone Health, New York, New York, USA.
  17. Camelia Iancu-Rubin: Department of Pathology, Molecular and Cell-Based Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
  18. Ian Mohr: Department of Microbiology, New York University Langone Health, New York, New York, USA.
  19. Kelly Ruggles: Department of Medicine, New York University Langone Health, New York, New York, USA.
  20. Kenneth A Stapleford: Department of Microbiology, New York University Langone Health, New York, New York, USA.
  21. Judith Hochman: Department of Medicine, New York University Langone Health, New York, New York, USA.
  22. Jeffrey S Berger: Department of Medicine, New York University Langone Health, New York, New York, USA. ORCID

Abstract

OBJECTIVE: Heightened inflammation, dysregulated immunity, and thrombotic events are characteristic of hospitalized COVID-19 patients. Given that platelets are key regulators of thrombosis, inflammation, and immunity they represent prime candidates as mediators of COVID-19-associated pathogenesis. The objective of this study was to understand the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the platelet phenotype via phenotypic (activation, aggregation) and transcriptomic characterization.
APPROACH AND RESULTS: In a cohort of 3915 hospitalized COVID-19 patients, we analyzed blood platelet indices collected at hospital admission. Following adjustment for demographics, clinical risk factors, medication, and biomarkers of inflammation and thrombosis, we find platelet count, size, and immaturity are associated with increased critical illness and all-cause mortality. Bone marrow, lung tissue, and blood from COVID-19 patients revealed the presence of SARS-CoV-2 virions in megakaryocytes and platelets. Characterization of COVID-19 platelets found them to be hyperreactive (increased aggregation, and expression of P-selectin and CD40) and to have a distinct transcriptomic profile characteristic of prothrombotic large and immature platelets. In vitro mechanistic studies highlight that the interaction of SARS-CoV-2 with megakaryocytes alters the platelet transcriptome, and its effects are distinct from the coronavirus responsible for the common cold (CoV-OC43).
CONCLUSIONS: Platelet count, size, and maturity associate with increased critical illness and all-cause mortality among hospitalized COVID-19 patients. Profiling tissues and blood from COVID-19 patients revealed that SARS-CoV-2 virions enter megakaryocytes and platelets and associate with alterations to the platelet transcriptome and activation profile.

Keywords

References

  1. J Thromb Haemost. 2015 Feb;13(2):268-70 [PMID: 25471925]
  2. Korean J Lab Med. 2010 Oct;30(5):451-9 [PMID: 20890075]
  3. Circ Res. 2018 Jan 19;122(2):337-351 [PMID: 29348254]
  4. J Thromb Haemost. 2020 Jun;18(6):1469-1472 [PMID: 32302435]
  5. Nat Rev Immunol. 2020 Jun;20(6):355-362 [PMID: 32376901]
  6. Can J Physiol Pharmacol. 1994 Mar;72(3):278-84 [PMID: 8069774]
  7. Int J Hematol. 2014 Nov;100(5):429-36 [PMID: 25227185]
  8. Arterioscler Thromb Vasc Biol. 2017 Apr;37(4):707-716 [PMID: 28153882]
  9. J Thromb Haemost. 2010 Jan;8(1):148-56 [PMID: 19691485]
  10. Am J Clin Pathol. 2006 Feb;125(2):282-7 [PMID: 16393688]
  11. Nature. 2020 Aug;584(7821):457-462 [PMID: 32668444]
  12. Arterioscler Thromb Vasc Biol. 2020 Jul;40(7):1635-1650 [PMID: 32434410]
  13. Semin Thromb Hemost. 2006 Apr;32(3):174-207 [PMID: 16673274]
  14. Nature. 2011 Nov 30;480(7376):201-8 [PMID: 22139419]
  15. Br J Haematol. 2020 Jul;190(1):e29-e33 [PMID: 32420607]
  16. JACC Basic Transl Sci. 2018 Mar 01;3(1):9-22 [PMID: 30062189]
  17. J Biomed Res. 2015 Oct 30;29: [PMID: 26541706]
  18. Front Immunol. 2014 Dec 18;5:649 [PMID: 25566260]
  19. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  20. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  21. Sci Transl Med. 2019 Nov 6;11(517): [PMID: 31694925]
  22. Crit Care. 1999;3(6):151-158 [PMID: 11056740]
  23. Circ Res. 2020 Sep 17;: [PMID: 32938299]
  24. J Clin Microbiol. 2010 Aug;48(8):2940-7 [PMID: 20554810]
  25. J Am Coll Cardiol. 2016 Jul 19;68(3):286-293 [PMID: 27417007]
  26. J Am Coll Cardiol. 2018 Jan 2;71(1):53-65 [PMID: 29301628]
  27. J Thromb Haemost. 2021 Jan;19(1):46-50 [PMID: 33119197]
  28. Nature. 2017 Apr 6;544(7648):105-109 [PMID: 28329764]
  29. Cell Rep. 2020 May 12;31(6):107615 [PMID: 32402278]
  30. Eur Heart J. 2021 Jun 14;42(23):2270-2279 [PMID: 33448289]
  31. Arterioscler Thromb Vasc Biol. 2020 Jun;40(6):1432-1440 [PMID: 32295424]
  32. JAMA. 2020 Aug 25;324(8):799-801 [PMID: 32702090]
  33. J Clin Invest. 2021 Jan 4;131(1): [PMID: 33079726]
  34. Crit Care Med. 2000 Jun;28(6):1871-6 [PMID: 10890635]
  35. Br J Haematol. 2004 Jul;126(1):93-9 [PMID: 15198738]
  36. Platelets. 2014;25(3):188-92 [PMID: 23786366]
  37. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  38. J Exp Med. 2020 Oct 5;217(10): [PMID: 32910820]
  39. J Hematol Oncol. 2020 Sep 4;13(1):120 [PMID: 32887634]
  40. Nat Rev Immunol. 2020 Jul;20(7):389-391 [PMID: 32439870]
  41. Blood. 2020 Sep 10;136(11):1317-1329 [PMID: 32573711]
  42. Thromb Haemost. 2017 Oct 5;117(10):1887-1895 [PMID: 28796275]
  43. EClinicalMedicine. 2020 Jun 25;24:100434 [PMID: 32766543]
  44. J Am Coll Cardiol. 2014 Nov 18-25;64(20):2122-9 [PMID: 25457402]
  45. Thromb Res. 2016 Aug;144:169-75 [PMID: 27380496]
  46. Blood. 2019 May 9;133(19):2013-2026 [PMID: 30723081]
  47. Immunity. 2021 Jun 8;54(6):1304-1319.e9 [PMID: 34048708]
  48. J Infect. 2020 Sep;81(3):357-371 [PMID: 32615199]
  49. Thromb Haemost. 2019 Nov;119(11):1795-1806 [PMID: 31473989]
  50. Medicine (Baltimore). 2015 May;94(19):e814 [PMID: 25984667]
  51. Nat Med. 2020 May;26(5):672-675 [PMID: 32296168]
  52. Thromb Res. 2020 Jul;191:145-147 [PMID: 32291094]
  53. Haematologica. 2019 Apr;104(4):806-818 [PMID: 30381300]
  54. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  55. J Am Coll Cardiol. 2008 Aug 26;52(9):743-9 [PMID: 18718422]
  56. Front Med (Lausanne). 2018 Apr 30;5:121 [PMID: 29761104]
  57. Eur Heart J. 2015 Dec 1;36(45):3202-10 [PMID: 26216931]
  58. Circ Res. 2020 Sep 11;127(7):945-947 [PMID: 32757722]
  59. J Thromb Haemost. 2020 Nov;18(11):3067-3073 [PMID: 32945081]
  60. Platelets. 2019;30(8):967-974 [PMID: 30388921]
  61. J Exp Med. 2020 Jun 1;217(6): [PMID: 32302401]
  62. J Thromb Haemost. 2007 Mar;5(3):490-6 [PMID: 17319904]
  63. J Thromb Thrombolysis. 2012 Feb;33(2):137-42 [PMID: 22198802]
  64. Circ Res. 2021 Sep 3;129(6):631-646 [PMID: 34293929]

Grants

  1. UL1 TR001445/NCATS NIH HHS
  2. R01 GM056927/NIGMS NIH HHS
  3. 1OT2HL156812-01/NIH HHS
  4. R01 AI152543/NIAID NIH HHS
  5. OT2 HL156812/NHLBI NIH HHS
  6. P30 CA016087/NCI NIH HHS
  7. R21 AI163924/NIAID NIH HHS
  8. R35HL144993/NIH HHS
  9. R21-AI163924/NIH HHS
  10. R01 AI073898/NIAID NIH HHS
  11. R35 HL144993/NHLBI NIH HHS

MeSH Term

Blood Platelets
COVID-19
Humans
SARS-CoV-2
Severity of Illness Index
Thrombosis