The Plant Growth-Promoting Fungus MF23 ( sp.) Increases Production of (Orchidaceae) by Affecting Nitrogen Uptake and Assimilation.

Tingting Shan, Lisi Zhou, Bing Li, Xiaomei Chen, Shunxing Guo, Airong Wang, Lixia Tian, Jingting Liu
Author Information
  1. Tingting Shan: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  2. Lisi Zhou: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  3. Bing Li: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  4. Xiaomei Chen: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  5. Shunxing Guo: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  6. Airong Wang: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  7. Lixia Tian: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  8. Jingting Liu: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Abstract

Kimura et Migo is a traditional and scarce medicinal orchid in China. Mycorrhizal fungi could supply nitrogen (N) to orchids for seed germination and seedling recruitment. However, the N transport mechanism between orchids and the fungus is poorly understand. Early studies found that the fungus MF23 ( sp.) could promote the growth of . To better dissect the molecular interactions involved in N transport between and MF23, transcriptome and metabolome analyses were conducted on conventional and mycorrhizal cultivations of . Moreover, validation tests were carried out in the greenhouse to measure net fluxes of and of roots by a non-invasive micro-test technology (NMT), determine N assimilation enzyme activity by the ELISA, and analyze the expression level of differentially expressed genes (DEGs) of N transporters and DEGs involved in N metabolism by RT-qPCR. Combined transcriptome and metabolome analyses showed that MF23 may influence N metabolism in . The expression of (nitrate transporter-activating protein), (ammonium transporter), (amino acid transporters), (oligopeptide transporters), and (glutamate dehydrogenases) in symbiotic was upregulated. NMT results showed a preference for in and indicated that MF23 could promote the uptake of and , especially for . ELISA results showed that MF23 could increase the activity of glutamine synthetase (GS) and glutamate dehydrogenase. This study suggested that MF23 increases the production of by affecting N uptake and assimilation capacity.

Keywords

References

  1. New Phytol. 2014 Apr;202(2):594-605 [PMID: 24494717]
  2. Plant Physiol. 2009 May;150(1):73-83 [PMID: 19329566]
  3. Sci Rep. 2017 Mar 22;7(1):316 [PMID: 28331229]
  4. Oecologia. 2007 Mar;151(2):206-17 [PMID: 17089139]
  5. Nat Commun. 2010 Jul 27;1:48 [PMID: 20975705]
  6. J Exp Bot. 2008;59(3):667-80 [PMID: 18296429]
  7. Mycorrhiza. 2018 Jan;28(1):93-100 [PMID: 28993893]
  8. J Exp Bot. 2016 May;67(10):3041-52 [PMID: 26994478]
  9. Ann Bot. 2013 Jun;111(6):1181-7 [PMID: 23532045]
  10. New Phytol. 2005 Dec;168(3):687-96 [PMID: 16313650]
  11. Plant Physiol. 2008 Oct;148(2):856-69 [PMID: 18753286]
  12. Bot Stud. 2020 Jan 27;61(1):2 [PMID: 31989371]
  13. Nature. 2005 Jun 9;435(7043):819-23 [PMID: 15944705]
  14. Mol Plant. 2016 Jun 6;9(6):837-56 [PMID: 27212387]
  15. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2666-71 [PMID: 22308426]
  16. New Phytol. 2009;181(1):199-207 [PMID: 18811615]
  17. New Phytol. 2017 Jan;213(1):365-379 [PMID: 27859287]
  18. Mol Plant. 2010 Nov;3(6):997-1011 [PMID: 21081651]
  19. Plant Divers. 2018 Jun 25;40(4):196-208 [PMID: 30740565]
  20. New Phytol. 2020 Dec;228(6):1939-1952 [PMID: 32668507]
  21. Sci China C Life Sci. 2009 Apr;52(4):381-9 [PMID: 19381464]
  22. Sci China Life Sci. 2016 Sep;59(9):974-6 [PMID: 27333786]
  23. New Phytol. 2006;171(2):405-16 [PMID: 16866946]
  24. New Phytol. 2014 Apr;202(2):606-615 [PMID: 24444001]
  25. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  26. Plant Biol (Stuttg). 2010 Mar;12(2):275-91 [PMID: 20398235]
  27. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  28. PeerJ. 2020 Jan 16;8:e8346 [PMID: 31988802]
  29. Plant Sci. 2017 Oct;263:39-45 [PMID: 28818382]
  30. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  31. Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4 [PMID: 18077471]
  32. Zhongguo Zhong Yao Za Zhi. 2017 May;42(10):2001-2005 [PMID: 29090564]
  33. Ying Yong Sheng Tai Xue Bao. 2014 Mar;25(3):903-10 [PMID: 24984513]
  34. Sci Rep. 2016 Dec 05;6:38370 [PMID: 27918495]
  35. Zhongguo Zhong Yao Za Zhi. 2017 Jun;42(12):2223-2227 [PMID: 28822173]

Word Cloud

Created with Highcharts 10.0.0NMF23metabolometransportersshowedglutamateuptakenitrogenorchidstransportfungussppromoteinvolvedtranscriptomeanalysesNMTassimilationactivityELISAexpressionDEGsmetabolismresultsdehydrogenaseKimuraetMigotraditionalscarcemedicinalorchidChinaMycorrhizalfungisupplyseedgerminationseedlingrecruitmentHowevermechanismpoorlyunderstandEarlystudiesfoundgrowthbetterdissectmolecularinteractionsconductedconventionalmycorrhizalcultivationsMoreovervalidationtestscarriedgreenhousemeasurenetfluxesrootsnon-invasivemicro-testtechnologydetermineenzymeanalyzeleveldifferentiallyexpressedgenesRT-qPCRCombinedmayinfluencenitratetransporter-activatingproteinammoniumtransporteraminoacidoligopeptidedehydrogenasessymbioticupregulatedpreferenceindicatedespeciallyincreaseglutaminesynthetaseGSstudysuggestedincreasesproductionaffectingcapacityPlantGrowth-PromotingFungusIncreasesProductionOrchidaceaeAffectingNitrogenUptakeAssimilationDendrobiumofficinaleMycena

Similar Articles

Cited By