COVID-19: A Comprehensive Review of Learning Models.

Shivam Chahar, Pradeep Kumar Roy
Author Information
  1. Shivam Chahar: School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, TN India.
  2. Pradeep Kumar Roy: Department of Computer Science and Engineering, Indian Institute of Information Technology, Surat, Gujarat India.

Abstract

Coronavirus disease is communicable and inhibits the infected person's immune system. It belongs to the Coronaviridae family and has affected 213 nations and territories so far. Many kinds of studies are being carried out to filter advice and provide oversight to monitor this outbreak. A comparative and brief review was carried out in this paper on research concerning the early identification of symptoms, estimation of the end of the pandemic, and examination of user-generated conversations. Chest X-ray images, abdominal computed tomography scan, tweets shared on social media are several of the datasets used by researchers. Using machine learning and deep learning methods such as -means clustering, Random Forest, Convolutional Neural Network, Long Short-Term Memory, Auto-Encoder, and Regression approaches, the above-mentioned datasets are processed. The studies on COVID-19 with machine learning and deep learning models with their results and limitations are outlined in this article. The challenges with open future research directions are discussed at the end.

References

  1. Comput Biol Med. 2020 Nov;126:104037 [PMID: 33065387]
  2. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780 [PMID: 33705321]
  3. Front Med (Lausanne). 2020 May 06;7:169 [PMID: 32435645]
  4. Radiology. 2020 Aug;296(2):E65-E71 [PMID: 32191588]
  5. Comput Biol Med. 2020 Jun;121:103792 [PMID: 32568675]
  6. Stoch Environ Res Risk Assess. 2020;34(7):959-972 [PMID: 32837309]
  7. Comput Methods Programs Biomed. 2020 Nov;196:105608 [PMID: 32599338]
  8. IEEE Trans Image Process. 2021;30:3113-3126 [PMID: 33600316]
  9. Patterns (N Y). 2020 Dec 11;1(9):100145 [PMID: 33225319]
  10. Chaos Solitons Fractals. 2020 Jun;135:109850 [PMID: 32355424]
  11. Inform Med Unlocked. 2020;20:100378 [PMID: 32839734]
  12. J Thorac Dis. 2020 Mar;12(3):165-174 [PMID: 32274081]
  13. Disaster Med Public Health Prep. 2020 Oct;14(5):e33-e38 [PMID: 32317044]
  14. Phys Eng Sci Med. 2020 Jun;43(2):635-640 [PMID: 32524445]
  15. Int Orthop. 2020 Aug;44(8):1539-1542 [PMID: 32462314]
  16. Appl Intell (Dordr). 2021;51(3):1690-1700 [PMID: 34764553]
  17. Infect Control Hosp Epidemiol. 2020 Jul;41(7):826-830 [PMID: 32122430]
  18. Chaos Solitons Fractals. 2020 Sep;138:109944 [PMID: 32536759]
  19. Cureus. 2020 Jul 28;12(7):e9448 [PMID: 32864270]
  20. Expert Syst Appl. 2021 Feb;164:114054 [PMID: 33013005]
  21. Chaos Solitons Fractals. 2020 Jun;135:109853 [PMID: 32501370]
  22. IEEE Access. 2020;8:115041-115050 [PMID: 32742893]
  23. Pattern Anal Appl. 2021;24(3):1207-1220 [PMID: 33994847]
  24. IEEE Trans Med Imaging. 2020 Aug;39(8):2626-2637 [PMID: 32730213]
  25. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  26. IEEE Access. 2020 Jun 12;8:109581-109595 [PMID: 34192103]
  27. Cell. 2020 Jun 11;181(6):1423-1433.e11 [PMID: 32416069]
  28. Comput Biol Med. 2020 Jun;121:103805 [PMID: 32568679]
  29. BMJ. 2020 Apr 7;369:m1328 [PMID: 32265220]
  30. IEEE Trans Med Imaging. 2021 Mar;40(3):879-890 [PMID: 33245693]
  31. Internet Things (Amst). 2020 Sep;11:100222 [PMID: 38620477]
  32. Front Artif Intell. 2020 May 22;3:41 [PMID: 33733158]
  33. Eur Radiol. 2021 Aug;31(8):6096-6104 [PMID: 33629156]
  34. PLoS One. 2020 Apr 24;15(4):e0232391 [PMID: 32330208]
  35. Sci Rep. 2020 Nov 11;10(1):19549 [PMID: 33177550]
  36. Pattern Recognit Lett. 2020 Oct;138:638-643 [PMID: 32958971]
  37. Phys Med Biol. 2021 Mar 17;66(6):065031 [PMID: 33729998]
  38. J Med Syst. 2021 Jun 8;45(7):75 [PMID: 34101042]
  39. Appl Intell (Dordr). 2021;51(2):854-864 [PMID: 34764548]
  40. J Med Biol Eng. 2020;40(3):462-469 [PMID: 32412551]
  41. Sci Total Environ. 2020 Aug 1;728:138762 [PMID: 32334157]
  42. IEEE Trans Netw Sci Eng. 2020 Sep 18;7(4):3279-3294 [PMID: 37981959]
  43. Eur Respir J. 2020 Aug 6;56(2): [PMID: 32444412]
  44. Med Hypotheses. 2020 Jul;140:109761 [PMID: 32344309]
  45. Smart Health (Amst). 2021 Apr;20:100178 [PMID: 33521226]
  46. IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):8570-8584 [PMID: 37015641]
  47. JMIR Public Health Surveill. 2020 Apr 14;6(2):e18828 [PMID: 32234709]
  48. Radiol Artif Intell. 2020 Jul 29;2(4):e200048 [PMID: 33928255]
  49. Nat Commun. 2020 Oct 9;11(1):5088 [PMID: 33037212]
  50. Chaos Solitons Fractals. 2020 Jun;135:109864 [PMID: 32390691]
  51. Appl Intell (Dordr). 2021;51(5):2689-2702 [PMID: 34764554]
  52. Med Image Anal. 2020 Oct;65:101794 [PMID: 32781377]

Word Cloud

Created with Highcharts 10.0.0learningstudiescarriedresearchenddatasetsmachinedeepCoronavirusdiseasecommunicableinhibitsinfectedperson'simmunesystembelongsCoronaviridaefamilyaffected213nationsterritoriesfarManykindsfilteradviceprovideoversightmonitoroutbreakcomparativebriefreviewpaperconcerningearlyidentificationsymptomsestimationpandemicexaminationuser-generatedconversationsChestX-rayimagesabdominalcomputedtomographyscantweetssharedsocialmediaseveralusedresearchersUsingmethods-meansclusteringRandomForestConvolutionalNeuralNetworkLongShort-TermMemoryAuto-EncoderRegressionapproachesabove-mentionedprocessedCOVID-19modelsresultslimitationsoutlinedarticlechallengesopenfuturedirectionsdiscussedCOVID-19:ComprehensiveReviewLearningModels

Similar Articles

Cited By