Identification of conserved SARS-CoV-2 spike epitopes that expand public cTfh clonotypes in mild COVID-19 patients.

Xiuyuan Lu, Yuki Hosono, Masamichi Nagae, Shigenari Ishizuka, Eri Ishikawa, Daisuke Motooka, Yuki Ozaki, Nicolas Sax, Yuichi Maeda, Yasuhiro Kato, Takayoshi Morita, Ryo Shinnakasu, Takeshi Inoue, Taishi Onodera, Takayuki Matsumura, Masaharu Shinkai, Takashi Sato, Shota Nakamura, Shunsuke Mori, Teru Kanda, Emi E Nakayama, Tatsuo Shioda, Tomohiro Kurosaki, Kiyoshi Takeda, Atsushi Kumanogoh, Hisashi Arase, Hironori Nakagami, Kazuo Yamashita, Yoshimasa Takahashi, Sho Yamasaki
Author Information
  1. Xiuyuan Lu: Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  2. Yuki Hosono: Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  3. Masamichi Nagae: Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  4. Shigenari Ishizuka: Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  5. Eri Ishikawa: Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  6. Daisuke Motooka: Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. ORCID
  7. Yuki Ozaki: Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. ORCID
  8. Nicolas Sax: KOTAI Biotechnologies, Inc., Suita, Japan. ORCID
  9. Yuichi Maeda: Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan. ORCID
  10. Yasuhiro Kato: Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan. ORCID
  11. Takayoshi Morita: Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan. ORCID
  12. Ryo Shinnakasu: Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  13. Takeshi Inoue: Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  14. Taishi Onodera: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan. ORCID
  15. Takayuki Matsumura: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan. ORCID
  16. Masaharu Shinkai: Tokyo Shinagawa Hospital, Tokyo, Japan. ORCID
  17. Takashi Sato: Tokyo Shinagawa Hospital, Tokyo, Japan. ORCID
  18. Shota Nakamura: Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. ORCID
  19. Shunsuke Mori: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. ORCID
  20. Teru Kanda: Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan. ORCID
  21. Emi E Nakayama: Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. ORCID
  22. Tatsuo Shioda: Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. ORCID
  23. Tomohiro Kurosaki: Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID
  24. Kiyoshi Takeda: Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Japan. ORCID
  25. Atsushi Kumanogoh: Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan. ORCID
  26. Hisashi Arase: Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Suita, Japan. ORCID
  27. Hironori Nakagami: Department of Health Development and Medicine, Graduate School of Medicine, Osaka University, Suita, Japan. ORCID
  28. Kazuo Yamashita: KOTAI Biotechnologies, Inc., Suita, Japan. ORCID
  29. Yoshimasa Takahashi: Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan. ORCID
  30. Sho Yamasaki: Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan. ORCID

Abstract

Adaptive immunity is a fundamental component in controlling COVID-19. In this process, follicular helper T (Tfh) cells are a subset of CD4+ T cells that mediate the production of protective antibodies; however, the SARS-CoV-2 epitopes activating Tfh cells are not well characterized. Here, we identified and crystallized TCRs of public circulating Tfh (cTfh) clonotypes that are expanded in patients who have recovered from mild symptoms. These public clonotypes recognized the SARS-CoV-2 spike (S) epitopes conserved across emerging variants. The epitope of the most prevalent cTfh clonotype, S864-882, was presented by multiple HLAs and activated T cells in most healthy donors, suggesting that this S region is a universal T cell epitope useful for booster antigen. SARS-CoV-2-specific public cTfh clonotypes also cross-reacted with specific commensal bacteria. In this study, we identified conserved SARS-CoV-2 S epitopes that activate public cTfh clonotypes associated with mild symptoms.

References

  1. Cell. 2021 Feb 18;184(4):861-880 [PMID: 33497610]
  2. Nature. 2021 May;593(7857):142-146 [PMID: 33780970]
  3. J Proteome Res. 2020 Jun 5;19(6):2304-2315 [PMID: 32308001]
  4. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  5. Annu Rev Immunol. 2016 May 20;34:335-68 [PMID: 26907215]
  6. Cell Rep. 2021 Feb 9;34(6):108728 [PMID: 33516277]
  7. Nat Methods. 2015 May;12(5):380-1 [PMID: 25924071]
  8. Protein Eng. 2003 Sep;16(9):707-11 [PMID: 14560057]
  9. Nat Struct Mol Biol. 2021 Jun;28(6):478-486 [PMID: 33981021]
  10. Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67 [PMID: 22505256]
  11. Int Immunol. 2013 Apr;25(4):235-46 [PMID: 23334921]
  12. Protein Sci. 2018 Jan;27(1):293-315 [PMID: 29067766]
  13. Trends Immunol. 2014 Sep;35(9):436-42 [PMID: 24998903]
  14. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5 [PMID: 20057045]
  15. Science. 2020 Mar 13;367(6483):1260-1263 [PMID: 32075877]
  16. N Engl J Med. 2021 Jun 10;384(23):2187-2201 [PMID: 33882225]
  17. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82 [PMID: 16369096]
  18. Methods Mol Biol. 2015;1282:99-108 [PMID: 25720475]
  19. J Exp Med. 2017 Jul 3;214(7):2139-2152 [PMID: 28637884]
  20. Immunity. 2013 Oct 17;39(4):758-69 [PMID: 24035365]
  21. Cell. 2020 Nov 12;183(4):996-1012.e19 [PMID: 33010815]
  22. Nature. 2020 Aug;584(7821):450-456 [PMID: 32698192]
  23. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2184-95 [PMID: 15572771]
  24. J Exp Med. 2019 Aug 5;216(8):1857-1873 [PMID: 31175140]
  25. Cell. 2020 Nov 25;183(5):1340-1353.e16 [PMID: 33096020]
  26. Genome Biol. 2019 Dec 23;20(1):296 [PMID: 31870423]
  27. Cell. 2020 Oct 1;183(1):143-157.e13 [PMID: 32877699]
  28. J Clin Invest. 2016 Jun 1;126(6):2191-204 [PMID: 27183389]
  29. Science. 2017 Oct 20;358(6361):359-365 [PMID: 29051379]
  30. N Engl J Med. 2021 Feb 4;384(5):403-416 [PMID: 33378609]
  31. Nature. 2020 Nov;587(7833):270-274 [PMID: 32726801]
  32. Science. 2020 Oct 2;370(6512):89-94 [PMID: 32753554]
  33. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  34. Nat Microbiol. 2021 Jan;6(1):51-58 [PMID: 33199863]
  35. Nucleic Acids Res. 2019 Jan 8;47(D1):D339-D343 [PMID: 30357391]
  36. Biochem Biophys Res Commun. 2021 Jan 1;534:680-686 [PMID: 33208230]
  37. Nat Genet. 2017 May;49(5):659-665 [PMID: 28369038]
  38. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  39. Immunol Rev. 2013 Mar;252(1):139-45 [PMID: 23405901]
  40. J Immunol. 1992 Jan 1;148(1):249-58 [PMID: 1727870]
  41. J Clin Invest. 2020 Dec 1;130(12):6588-6599 [PMID: 32841212]
  42. J Virol. 2015 Mar;89(5):2684-97 [PMID: 25520514]
  43. Nucleic Acids Res. 2020 Jan 8;48(D1):D783-D788 [PMID: 31722398]
  44. N Engl J Med. 2021 May 20;384(20):1899-1909 [PMID: 33951374]
  45. mBio. 2021 Mar 2;12(2): [PMID: 33653892]
  46. Glob Chall. 2017 Jan 10;1(1):33-46 [PMID: 31565258]
  47. Lancet. 2021 Mar 6;397(10277):881-891 [PMID: 33617777]
  48. Immunity. 2019 May 21;50(5):1132-1148 [PMID: 31117010]
  49. Nat Immunol. 2020 Nov;21(11):1336-1345 [PMID: 32887977]
  50. Immunity. 2020 Dec 15;53(6):1245-1257.e5 [PMID: 33326767]
  51. Immunity. 2020 Jun 16;52(6):971-977.e3 [PMID: 32413330]
  52. J Clin Invest. 2021 May 17;131(10): [PMID: 33830946]
  53. Nature. 2021 May;593(7857):136-141 [PMID: 33706364]
  54. Nature. 2021 May;593(7857):130-135 [PMID: 33684923]
  55. Science. 2015 Aug 28;349(6251):993-7 [PMID: 26272906]
  56. N Engl J Med. 2020 Dec 17;383(25):2439-2450 [PMID: 33053279]

Grants

  1. 20fk0108265/Japan Agency for Medical Research and Development
  2. JP18H05279/Japan Society for the Promotion of Science
  3. /Kansai Economic Federation
  4. /Mitsubishi Foundation
  5. /AnGes
  6. /Daicel
  7. /FunPep

MeSH Term

Adult
Antibodies, Viral
COVID-19
Epitopes, T-Lymphocyte
Female
HLA Antigens
Humans
Lymphocyte Activation
Male
SARS-CoV-2
Spike Glycoprotein, Coronavirus
T-Lymphocytes, Helper-Inducer

Chemicals

Antibodies, Viral
Epitopes, T-Lymphocyte
HLA Antigens
Spike Glycoprotein, Coronavirus
spike protein, SARS-CoV-2