Optimal UAV Deployment and Resource Management in UAV Relay Networks.

Sang Ik Han, Jaeuk Baek
Author Information
  1. Sang Ik Han: School of Smart IT, Semyung University, 65 Semyeong-ro, Jecheon-si 27136, Korea. ORCID
  2. Jaeuk Baek: Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea. ORCID

Abstract

UAV equipped three-dimensional (3D) wireless networks can provide a solution for the requirements of 5G communications, such as enhanced Mobile Broadband (eMBB) and massive Machine Type Communications (mMTC). Especially, the introduction of an unmanned aerial vehicle (UAV) as a relay node can improve the connectivity, extend the terrestrial base station (BS) coverage and enhance the throughput by taking advantage of a strong air-to-ground line of sight (LOS) channel. In this paper, we consider the deployment and resource allocation of UAV relay network (URN) to maximize the throughput of user equipment (UE) within a cell, while guaranteeing a reliable transmission to UE outside the coverage of BS. To this end, we formulate joint UAV deployment and resource allocation problems, whose analytical solutions can be hardly obtained, in general. We propose a fast and practical algorithm to provide the optimal solution for the number of transmit time slots and the UAV relay location in a sequential manner. The transmit power at BS and UAV is determined in advance based on the availability of channel state information (CSI). Simulation results demonstrate that the proposed algorithms can significantly reduce the computational effort and complexity to determine the optimal UAV location and transmit time slots over an exhaustive search.

Keywords

References

  1. Sensors (Basel). 2018 Jul 25;18(8): [PMID: 30044413]
  2. Sensors (Basel). 2019 Jul 30;19(15): [PMID: 31366112]
  3. Sensors (Basel). 2019 Aug 26;19(17): [PMID: 31454994]

Word Cloud

Created with Highcharts 10.0.0UAVcanrelaytransmitBSresourceallocationtimenetworksprovidesolutioncoveragethroughputchanneldeploymentUEoptimalslotslocationequippedthree-dimensional3Dwirelessrequirements5GcommunicationsenhancedMobileBroadbandeMBBmassiveMachineTypeCommunicationsmMTCEspeciallyintroductionunmannedaerialvehiclenodeimproveconnectivityextendterrestrialbasestationenhancetakingadvantagestrongair-to-groundlinesightLOSpaperconsidernetworkURNmaximizeuserequipmentwithincellguaranteeingreliabletransmissionoutsideendformulatejointproblemswhoseanalyticalsolutionshardlyobtainedgeneralproposefastpracticalalgorithmnumbersequentialmannerpowerdeterminedadvancebasedavailabilitystateinformationCSISimulationresultsdemonstrateproposedalgorithmssignificantlyreducecomputationaleffortcomplexitydetermineexhaustivesearchOptimalDeploymentResourceManagementRelayNetworkspositioningmanagement

Similar Articles

Cited By