Shape-restricted estimation and spatial clustering of COVID-19 infection rate curves.

James Matuk, Xiaohan Guo
Author Information
  1. James Matuk: Duke University, 214 Old Chemistry, Durham, NC 27708, USA.
  2. Xiaohan Guo: The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA.

Abstract

The study of regional COVID-19 daily reported cases is used to understand pattern of spread and disease progression over time. These data are challenging to model due to noise that is present, which arises from failures in reporting, false positive tests, etc., and the spatial dependence between regions. In this work, we extend a recently developed Bayesian modeling framework for inference of functional data to jointly estimate and cluster daily reported cases data from US states, while accounting for spatial dependence between US states. Shape-restriction allows us to directly infer the number of extrema of a smooth infection rate curve that underlies noisy data. Other parameters in the model account for the relative timing of extrema, and the magnitude and severity of infection rates. We incorporate mobility behavior of each US state's population into an informative prior model to account for the spatial dependence between US states. Our model corroborates past work that shows that different US states have indeed experienced COVID-19 differently, but that there are regional patterns within the US. The modeling results can be used to assess severity of infection in individual US states and trends of neighboring US states to aid pandemic planning. Retrospectively, this model can be used to see which factors (governmental, behavioral, etc.) are associated with the varying shapes of infection rate curves, which is left as future work.

Keywords

References

  1. JAMA. 2020 May 12;323(18):1767-1768 [PMID: 32250388]
  2. Commun Stat Simul Comput. 2022;51(4):1415-1435 [PMID: 35755486]
  3. Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24180-24187 [PMID: 32913057]
  4. Lancet Infect Dis. 2020 Nov;20(11):1247-1254 [PMID: 32621869]
  5. Chaos Solitons Fractals. 2020 Oct;139:110057 [PMID: 32834610]
  6. Math Biosci. 2020 Aug;326:108391 [PMID: 32497623]
  7. Sci Rep. 2021 Aug 30;11(1):17054 [PMID: 34462450]
  8. BMC Med. 2020 May 25;18(1):152 [PMID: 32448247]
  9. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16732-16738 [PMID: 32616574]
  10. Spat Stat. 2022 Oct;51: [PMID: 36777259]
  11. Science. 2020 May 1;368(6490):493-497 [PMID: 32213647]
  12. Math Biosci Eng. 2020 Nov 2;17(6):7562-7604 [PMID: 33378910]
  13. J Am Stat Assoc. 2022;117(540):1964-1980 [PMID: 36945325]
  14. J Chin Med Assoc. 2020 Mar;83(3):217-220 [PMID: 32134861]
  15. Biometrika. 2017 Dec;104(4):939-952 [PMID: 29422695]
  16. Spat Stat. 2020 Aug;38:100443 [PMID: 32292691]
  17. Nat Med. 2020 Jun;26(6):855-860 [PMID: 32322102]
  18. Sci Adv. 2020 Dec 4;6(49): [PMID: 33158911]
  19. Infection. 2021 Feb;49(1):15-28 [PMID: 32860214]
  20. J Am Stat Assoc. 2020;115(531):1378-1392 [PMID: 34413553]

Word Cloud

Created with Highcharts 10.0.0USstatesdatamodelinfectionCOVID-19spatialuseddependenceworkmodelingrateregionaldailyreportedcasesetcBayesianinferenceextremaaccountseveritycancurvesstudyunderstandpatternspreaddiseaseprogressiontimechallengingduenoisepresentarisesfailuresreportingfalsepositivetestsregionsextendrecentlydevelopedframeworkfunctionaljointlyestimateclusteraccountingShape-restrictionallowsusdirectlyinfernumbersmoothcurveunderliesnoisyparametersrelativetimingmagnituderatesincorporatemobilitybehaviorstate'spopulationinformativepriorcorroboratespastshowsdifferentindeedexperienceddifferentlypatternswithinresultsassessindividualtrendsneighboringaidpandemicplanningRetrospectivelyseefactorsgovernmentalbehavioralassociatedvaryingshapesleftfutureShape-restrictedestimationclusteringFunctionalanalysisSpatio-temporal

Similar Articles

Cited By

No available data.