The impact of intermittent exercise on mouse ethanol drinking and abstinence-associated affective behavior and physiology.

Samuel W Centanni, Sara Y Conley, Joseph R Luchsinger, Louise Lantier, Danny G Winder
Author Information
  1. Samuel W Centanni: Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. ORCID
  2. Sara Y Conley: Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
  3. Joseph R Luchsinger: Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
  4. Louise Lantier: Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
  5. Danny G Winder: Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. ORCID

Abstract

BACKGROUND: Negative emotional states are associated with the initiation and maintenance of alcohol use and drive relapse to drinking during withdrawal and protracted abstinence. Physical exercise is correlated with decreased negative affective symptoms, although a direct relationship between drinking patterns and exercise level has not been fully elucidated.
METHODS: We incorporated intermittent running wheel access into a chronic continuous access, two-bottle choice alcohol drinking model in female C57BL/6J Mice. Wheel access was granted intermittently once Mice established a preference for alcohol over water. After 6 weeks, alcohol was removed (forced abstinence) and Mice were given continuous access to unlocked or locked wheels. Negative affect-like behavior, home cage behavior, and metabolic activity were measured during protracted abstinence.
RESULTS: Wheel access shifted drinking patterns in the Mice, increasing drinking when the wheel was locked, and decreasing drinking when unlocked. Moreover, alcohol preference and consumption were strongly negatively correlated with the amount of running. An assessment of negative affect-like behavior in abstinence via the novelty suppressed feeding and saccharin preference tests (SPT) showed that unlimited wheel access mitigated abstinence-induced latency increases. Mice in abstinence also spent more time sleeping during the active dark cycle than control Mice, providing additional evidence for abstinence-induced anhedonia- and depression-like behavior. Furthermore, running wheel access in abstinence decreased dark cycle sleep to comparable alcohol- and wheel-na��ve Mice. Given the positive impact of exercise and the negative impact of alcohol on metabolic health, we compared metabolic phenotypes of alcohol-abstinent Mice with and without wheel access. Wheel access increased energy expenditure, carbon dioxide production, and oxygen consumption, providing a potential metabolic mechanism through which wheel access improves affective state.
CONCLUSIONS: This study suggests that including exercise in AUD treatment regimens has the potential to reduce drinking, improve affective state during abstinence and could serve as a non-pharmacological approach to prevent the development of an AUD in high-risk individuals.

Keywords

References

  1. PLoS One. 2017 Oct 19;12(10):e0186076 [PMID: 29049336]
  2. Neurosci Biobehav Rev. 2013 Sep;37(8):1622-44 [PMID: 23806439]
  3. Alcohol Clin Exp Res. 2010 Mar 1;34(3):404-14 [PMID: 20028365]
  4. PLoS One. 2016 Sep 19;11(9):e0163044 [PMID: 27643787]
  5. Cell Metab. 2018 Oct 2;28(4):656-666.e1 [PMID: 30017358]
  6. Pharmacol Biochem Behav. 2012 Nov;103(1):18-25 [PMID: 22871538]
  7. Trends Pharmacol Sci. 2017 Feb;38(2):181-194 [PMID: 27916279]
  8. Front Psychiatry. 2015 Nov 02;6:156 [PMID: 26578988]
  9. Physiol Genomics. 2007 Jan 17;28(2):232-8 [PMID: 16985007]
  10. Neuropsychopharmacology. 2018 Aug;43(9):1915-1923 [PMID: 29907878]
  11. Scand J Public Health. 2019 Jun;47(4):462-468 [PMID: 29480087]
  12. Int J Environ Res Public Health. 2010 Dec;7(12):4281-304 [PMID: 21318009]
  13. Neuropsychopharmacology. 2016 Jul;41(8):2062-71 [PMID: 26751284]
  14. Alcohol Clin Exp Res. 1998 Nov;22(8):1796-802 [PMID: 9835298]
  15. Alcohol. 2004 May;33(1):63-71 [PMID: 15353174]
  16. Alcohol Clin Exp Res. 2014 Aug;38(8):2225-33 [PMID: 24976511]
  17. Trends Neurosci. 2007 Sep;30(9):464-72 [PMID: 17765329]
  18. Int Rev Neurobiol. 2019;147:219-267 [PMID: 31607356]
  19. Alcohol. 2016 Jun;53:51-60 [PMID: 27286936]
  20. Alcohol. 2009 Sep;43(6):443-52 [PMID: 19801274]
  21. Drug Alcohol Depend. 1995 Nov;40(1):1-7 [PMID: 8746918]
  22. Alcohol Clin Exp Res. 2010 Sep 1;34(9):1651-8 [PMID: 20569242]
  23. Sleep. 2009 Oct;32(10):1341-52 [PMID: 19848363]
  24. PLoS One. 2007 Aug 01;2(8):e698 [PMID: 17668074]
  25. Front Pharmacol. 2013 Jul 23;4:93 [PMID: 23898297]
  26. Drug Alcohol Depend. 2015 Aug 1;153:3-13 [PMID: 26091750]
  27. J Physiol. 1949 Aug;109(1-2):1-9 [PMID: 15394301]
  28. Alcohol Clin Exp Res. 2006 Jul;30(7):1214-22 [PMID: 16792570]
  29. Pharmacol Biochem Behav. 2012 Jan;100(3):485-9 [PMID: 22037408]
  30. Physiol Behav. 2015 Jan;138:28-36 [PMID: 25447477]
  31. Adv Exp Med Biol. 1977;85B:389-402 [PMID: 202148]
  32. Genes Brain Behav. 2020 Mar;19(3):e12632 [PMID: 31912976]
  33. Int J Neuropsychopharmacol. 2005 Sep;8(3):357-68 [PMID: 15769301]
  34. Hippocampus. 2006;16(3):287-95 [PMID: 16421863]
  35. Physiol Behav. 2019 Jul 1;206:118-124 [PMID: 30946835]
  36. Neuropsychopharmacology. 2019 Feb;44(3):526-537 [PMID: 30390064]
  37. J Pharmacol Exp Ther. 2006 May;317(2):711-23 [PMID: 16456085]
  38. Eur J Epidemiol. 2006;21(2):129-38 [PMID: 16518681]
  39. Alcohol Clin Exp Res. 2014 Sep;38(9):2387-95 [PMID: 25257288]
  40. Percept Mot Skills. 1992 Oct;75(2):355-61 [PMID: 1408588]
  41. Behav Brain Res. 2014 Feb 1;259:313-20 [PMID: 24239693]
  42. J Neurochem. 2002 Dec;83(5):1087-93 [PMID: 12437579]
  43. Alcohol. 2008 Aug;42(5):417-24 [PMID: 18579336]
  44. Eur J Neurosci. 2013 Jun;37(11):1803-10 [PMID: 23551162]
  45. Neuropharmacology. 2019 Feb;145(Pt A):25-36 [PMID: 29477298]
  46. JAMA. 2017 Jan 10;317(2):133-134 [PMID: 27854372]
  47. Neuropsychopharmacology. 2020 Jan;45(1):141-165 [PMID: 31234199]
  48. Front Psychiatry. 2019 Aug 27;10:600 [PMID: 31507468]

Grants

  1. S10RR028101/NIDDK NIH HHS
  2. K99 AA02774/NIAAA NIH HHS
  3. R01 AA019455/NIAAA NIH HHS
  4. F30 AA027126/NIAAA NIH HHS
  5. R37 AA019455/NIAAA NIH HHS
  6. T32 GM007347/NIGMS NIH HHS
  7. S10 RR028101/NCRR NIH HHS
  8. K99 AA027774/NIAAA NIH HHS
  9. U24 DK059376/NIDDK NIH HHS
  10. T32 GM152284/NIGMS NIH HHS
  11. P50 HD103537/NICHD NIH HHS

MeSH Term

Alcohol Abstinence
Alcohol Drinking
Alcoholism
Animals
Behavior, Animal
Energy Metabolism
Female
Mice
Mice, Inbred C57BL
Physical Conditioning, Animal
Sleep

Word Cloud

Created with Highcharts 10.0.0accessdrinkingabstinencemicealcoholexercisewheelbehavioraffectivemetabolicnegativerunningWheelpreferenceimpactNegativeprotractedcorrelateddecreasedpatternsintermittentcontinuousunlockedlockedaffect-likeconsumptionabstinence-induceddarkcycleprovidingpotentialstateAUDBACKGROUND:emotionalstatesassociatedinitiationmaintenanceusedriverelapsewithdrawalPhysicalsymptomsalthoughdirectrelationshiplevelfullyelucidatedMETHODS:incorporatedchronictwo-bottlechoicemodelfemaleC57BL/6Jgrantedintermittentlyestablishedwater6 weeksremovedforcedgivenwheelshomecageactivitymeasuredRESULTS:shiftedincreasingdecreasingMoreoverstronglynegativelyamountassessmentvianoveltysuppressedfeedingsaccharintestsSPTshowedunlimitedmitigatedlatencyincreasesMicealsospenttimesleepingactivecontroladditionalevidenceanhedonia-depression-likeFurthermoresleepcomparablealcohol-wheel-na��veGivenpositivehealthcomparedphenotypesalcohol-abstinentwithoutincreasedenergyexpenditurecarbondioxideproductionoxygenmechanismimprovesCONCLUSIONS:studysuggestsincludingtreatmentregimensreduceimproveservenon-pharmacologicalapproachpreventdevelopmenthigh-riskindividualsmouseethanolabstinence-associatedphysiologyEtOHaffectmetabolism

Similar Articles

Cited By (5)