Structure inference of networked system with the synergy of deep residual network and fully connected layer network.

Keke Huang, Shuo Li, Wenfeng Deng, Zhaofei Yu, Lei Ma
Author Information
  1. Keke Huang: School of Automation, Central South University, Changsha 410083, China.
  2. Shuo Li: School of Automation, Central South University, Changsha 410083, China.
  3. Wenfeng Deng: School of Automation, Central South University, Changsha 410083, China.
  4. Zhaofei Yu: Institute for Artificial Intelligence, Peking University, Beijing 100871, China; Department of Computer Science and Technology, Peking University, Beijing 100871, China.
  5. Lei Ma: Department of Computer Science and Technology, Peking University, Beijing 100871, China; Beijing Academy of Artificial Intelligence, Beijing 100085, China. Electronic address: lei.ma@pku.edu.cn.

Abstract

The networked systems are booming in multi-disciplines, including the industrial engineering system, the social system, and so on. The network structure is a prerequisite for the understanding and exploration of networked systems. However, the network structure is always unknown in practice, thus, it is significant yet challenging to investigate the inference of network structure. Although some model-based methods and data-driven methods, such as the phase-space based method and the compressive sensing based method, have investigated the structure inference tasks, they were time-consuming due to the greedy iterative optimization procedure, which makes them difficult to satisfy real-time structure inference requirements. Although the reconstruction time of L1 and other methods is short, the reconstruction accuracy is very low. Inspired by the powerful representation ability and time efficiency for the structure inference with the deep learning framework, a novel synergy method combines the deep residual network and fully connected layer network to solve the network structure inference task efficiently and accurately. This method perfectly solves the problems of long reconstruction time and low accuracy of traditional methods. Moreover, the proposed method can also fulfill the inference task of large scale complex network, which further indicates the scalability of the proposed method.

Keywords

MeSH Term

Deep Learning

Word Cloud

Created with Highcharts 10.0.0networkstructureinferencemethodmethodsnetworkedsystemreconstructiontimedeepsystemsAlthoughbasedsensingaccuracylowlearningsynergyresidualfullyconnectedlayertaskproposedboomingmulti-disciplinesincludingindustrialengineeringsocialprerequisiteunderstandingexplorationHoweveralwaysunknownpracticethussignificantyetchallenginginvestigatemodel-baseddata-drivenphase-spacecompressiveinvestigatedtaskstime-consumingduegreedyiterativeoptimizationproceduremakesdifficultsatisfyreal-timerequirementsL1shortInspiredpowerfulrepresentationabilityefficiencyframeworknovelcombinessolveefficientlyaccuratelyperfectlysolvesproblemslongtraditionalMoreovercanalsofulfilllargescalecomplexindicatesscalabilityStructureComplexCompressiveDeepNetworkResidual

Similar Articles

Cited By