HYDROLOGICAL, PHYSICAL, AND CHEMICAL FUNCTIONS AND CONNECTIVITY OF NON-FLOODPLAIN WETLANDS TO DOWNSTREAM WATERS: A REVIEW.

Charles R Lane, Scott G Leibowitz, Bradley C Autrey, Stephen D LeDuc, Laurie C Alexander
Author Information
  1. Charles R Lane: National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA.
  2. Scott G Leibowitz: National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Corvallis, Oregon, USA.
  3. Bradley C Autrey: National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA.
  4. Stephen D LeDuc: National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, D.C., USA.
  5. Laurie C Alexander: National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, D.C., USA.

Abstract

We reviewed the scientific literature on non-floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the literature for source, sink, lag, and transformation functions, as well as factors affecting connectivity. We determined NFWs are important landscape components, hydrologically, physically, and chemically affecting downstream aquatic systems. NFWs are hydrologic and chemical sources for other waters, hydrologically connecting across long distances and contributing compounds such as methylated mercury and dissolved organic matter. NFWs reduced flood peaks and maintained baseflows in stream and river networks through hydrologic lag and sink functions, and sequestered or assimilated substantial nutrient inputs through chemical sink and transformative functions. Landscape-scale connectivity of NFWs affects water and material fluxes to downstream river networks, substantially modifying the characteristics and function of downstream waters. Many factors determine the effects of NFW hydrological, physical, and chemical functions on downstream systems, and additional research quantifying these factors and impacts is warranted. We conclude NFWs are hydrologically, chemically, and physically interconnected with stream and river networks though this connectivity varies in frequency, duration, magnitude, and timing.

Keywords

References

  1. Hydrol Earth Syst Sci. 2018 Mar 15;22(3):1851-1873 [PMID: 34795470]
  2. J Environ Qual. 2010 Apr 13;39(3):882-95 [PMID: 20400584]
  3. J Am Water Resour Assoc. 2018 Apr;54(2):323-345 [PMID: 30245566]
  4. Ecol Appl. 2015 Mar;25(2):451-65 [PMID: 26263667]
  5. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5732-7 [PMID: 17360379]
  6. J Am Water Resour Assoc. 2018;54(2):372-399 [PMID: 31296983]
  7. Water Sci Technol. 2002;46(6-7):199-206 [PMID: 12380992]
  8. Wetlands (Wilmington). 2017;37(4):801-806 [PMID: 30147216]
  9. Wetl Ecol Manag. 2017;25(3):275-297 [PMID: 32025096]
  10. Hydrol Process. 2018;32(2):305-313 [PMID: 29681686]
  11. Mar Freshw Res. 2017;68(12):2253-2265 [PMID: 30505203]
  12. Water Resour Res. 2018 Mar 09;54(2):995-977 [PMID: 29681665]
  13. Ecol Appl. 2018 Jun;28(4):953-966 [PMID: 29437239]
  14. J Environ Qual. 2013 Jul;42(4):1245-55 [PMID: 24216376]
  15. Nat Geosci. 2017;10(11):809-815 [PMID: 30079098]
  16. J Environ Qual. 2015 Nov;44(6):1956-64 [PMID: 26641348]
  17. Wetlands (Wilmington). 2016;36(Suppl 2):309-321 [PMID: 32669752]
  18. Ambio. 2002 Mar;31(2):64-71 [PMID: 12078011]
  19. J Environ Qual. 2009 Aug 24;38(5):1942-55 [PMID: 19704138]
  20. Front Ecol Environ. 2017 Aug;15(6):319-327 [PMID: 30505246]
  21. Environ Pollut. 2008 Jul;154(1):46-55 [PMID: 18215448]
  22. Sci Total Environ. 2008 Dec 15;407(1):471-80 [PMID: 18848345]
  23. Hydrol Earth Syst Sci. 2017;21(7):3579-3595 [PMID: 30147279]
  24. J Am Water Resour Assoc. 2017 Aug 2;53(4):774-790 [PMID: 33408455]
  25. J Environ Qual. 2010 Jul-Aug;39(4):1517-25 [PMID: 20830938]
  26. J Environ Manage. 2016 Dec 15;184(Pt 2):327-339 [PMID: 27745769]
  27. J Am Water Resour Assoc. 2018;54(2):298-322 [PMID: 30078985]
  28. Environ Pollut. 2003;123(2):181-91 [PMID: 12628198]
  29. J Environ Manage. 2010 Jul;91(7):1511-25 [PMID: 20236754]
  30. Ecol Appl. ;24(7):1569-82 [PMID: 29210223]
  31. Sci Total Environ. 2004 Jun 5;325(1-3):239-54 [PMID: 15144792]
  32. Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):1978-86 [PMID: 26858425]
  33. Environ Pollut. 1994;84(3):301-24 [PMID: 15091702]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0NFWsriverconnectivitychemicalfunctionsdownstreamnetworkswetlandssystemsstreamsinkfactorshydrologicallyliteraturenon-floodplaindeterminehydrologicalphysicallagaffectingphysicallychemicallyhydrologicwatersfunctionANDreviewedscientificfreshwatertypicallylocateddistalriparianfloodplainfunctioningnetworkassayedsourcetransformationwelldeterminedimportantlandscapecomponentsaquaticsourcesconnectingacrosslongdistancescontributingcompoundsmethylatedmercurydissolvedorganicmatterreducedfloodpeaksmaintainedbaseflowssequesteredassimilatedsubstantialnutrientinputstransformativeLandscape-scaleaffectswatermaterialfluxessubstantiallymodifyingcharacteristicsManyeffectsNFWadditionalresearchquantifyingimpactswarrantedconcludeinterconnectedthoughvariesfrequencydurationmagnitudetimingHYDROLOGICALPHYSICALCHEMICALFUNCTIONSCONNECTIVITYOFNON-FLOODPLAINWETLANDSTODOWNSTREAMWATERS:REVIEW

Similar Articles

Cited By