A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures.

Jonathan Boss, Alexander Rix, Yin-Hsiu Chen, Naveen N Narisetty, Zhenke Wu, Kelly K Ferguson, Thomas F McElrath, John D Meeker, Bhramar Mukherjee
Author Information
  1. Jonathan Boss: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.
  2. Alexander Rix: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.
  3. Yin-Hsiu Chen: Google Inc., Mountain View, California, U.S.A.
  4. Naveen N Narisetty: Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, U.S.A.
  5. Zhenke Wu: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.
  6. Kelly K Ferguson: Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, U.S.A.
  7. Thomas F McElrath: Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, Massachusetts, U.S.A.
  8. John D Meeker: Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, U.S.A.
  9. Bhramar Mukherjee: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.

Abstract

Environmental health studies are increasingly measuring multiple pollutants to characterize the joint health effects attributable to exposure mixtures. However, the underlying dose-response relationship between toxicants and health outcomes of interest may be highly nonlinear, with possible nonlinear interaction effects. Existing penalized regression methods that account for exposure interactions either cannot accommodate nonlinear interactions while maintaining strong heredity or are computationally unstable in applications with limited sample size. In this paper, we propose a general shrinkage and selection framework to identify noteworthy nonlinear main and interaction effects among a set of exposures. We design hierarchical integrative group least absolute shrinkage and selection operator (HiGLASSO) to (a) impose strong heredity constraints on two-way interaction effects (hierarchical), (b) incorporate adaptive weights without necessitating initial coefficient estimates (integrative), and (c) induce sparsity for variable selection while respecting group structure (group LASSO). We prove sparsistency of the proposed method and apply HiGLASSO to an environmental toxicants dataset from the LIFECODES birth cohort, where the investigators are interested in understanding the joint effects of 21 urinary toxicant biomarkers on urinary 8-isoprostane, a measure of oxidative stress. An implementation of HiGLASSO is available in the higlasso R package, accessible through the Comprehensive R Archive Network.

Keywords

References

  1. J Appl Toxicol. 2008 Jul;28(5):561-78 [PMID: 18484575]
  2. Stat Med. 2020 May 20;39(11):1675-1694 [PMID: 32101638]
  3. Biostatistics. 2015 Jul;16(3):493-508 [PMID: 25532525]
  4. Genet Epidemiol. 2010 Apr;34(3):275-85 [PMID: 20088021]
  5. Environ Int. 2018 Mar;112:243-250 [PMID: 29294443]
  6. Biometrics. 2009 Sep;65(3):692-700 [PMID: 18945266]
  7. Ann Stat. 2009 Jan 1;37(5A):2178-2201 [PMID: 19784398]
  8. Am J Obstet Gynecol. 2015 Feb;212(2):208.e1-8 [PMID: 25111586]
  9. Environ Res. 2011 Jul;111(5):718-26 [PMID: 21349512]
  10. Environ Sci Technol. 2012 Jan 3;46(1):477-85 [PMID: 22085025]
  11. Ann Stat. 2010 Aug 1;38(4):2282-2313 [PMID: 21127739]
  12. Environmetrics. 2018 Jun;29(4): [PMID: 30686915]
  13. Int J Androl. 2006 Feb;29(1):134-9; discussion 181-5 [PMID: 16466533]
  14. Ann Stat. 2009;37(4):1733-1751 [PMID: 20445770]
  15. Altern Med Rev. 2010 Jul;15(2):101-9 [PMID: 20806995]
  16. Environ Res. 2020 Apr;183:109178 [PMID: 32007748]
  17. J Am Stat Assoc. 2017;112(519):966-978 [PMID: 29780190]
  18. Ann Stat. 2013 Jun;41(3):1111-1141 [PMID: 26257447]
  19. Wiley Interdiscip Rev Data Min Knowl Discov. 2011 Jan;1(1):55-63 [PMID: 22523608]
  20. Comput Stat Data Anal. 2011 Jun 1;55(6):2026-2037 [PMID: 21479118]
  21. Environ Health Perspect. 2015 Mar;123(3):210-6 [PMID: 25402001]
  22. J Expo Sci Environ Epidemiol. 2012 Jul;22(4):376-85 [PMID: 22354176]
  23. Stat Med. 2019 Apr 30;38(9):1582-1600 [PMID: 30586682]
  24. J Comput Graph Stat. 2015;24(3):627-654 [PMID: 26759522]
  25. J Am Stat Assoc. 2014;109(507):1285-1301 [PMID: 25386043]
  26. Am J Respir Crit Care Med. 1999 Jul;160(1):216-20 [PMID: 10390403]
  27. Am J Epidemiol. 2012 Feb 1;175(3):191-202 [PMID: 22199026]
  28. Am J Epidemiol. 2012 Feb 1;175(3):177-90 [PMID: 22199027]
  29. Int J Hyg Environ Health. 2015 Mar;218(2):212-9 [PMID: 25435060]

Grants

  1. P42 ES017198/NIEHS NIH HHS
  2. P30 CA046592/NCI NIH HHS
  3. R01 ES018872/NIEHS NIH HHS
  4. R01 ES031591/NIEHS NIH HHS
  5. P30 ES017885/NIEHS NIH HHS
  6. UH3 OD023251/NIH HHS
  7. R21 ES020811/NIEHS NIH HHS

Word Cloud

Created with Highcharts 10.0.0effectsnonlinearselectiongrouphealthinteractionheredityshrinkagehierarchicalintegrativeHiGLASSOEnvironmentaljointexposuremixturestoxicantsinteractionsstrongexposuresleastabsoluteoperatorLASSOenvironmentalurinaryRstudiesincreasinglymeasuringmultiplepollutantscharacterizeattributableHoweverunderlyingdose-responserelationshipoutcomesinterestmayhighlypossibleExistingpenalizedregressionmethodsaccounteitheraccommodatemaintainingcomputationallyunstableapplicationslimitedsamplesizepaperproposegeneralframeworkidentifynoteworthymainamongsetdesignimposeconstraintstwo-waybincorporateadaptiveweightswithoutnecessitatinginitialcoefficientestimatescinducesparsityvariablerespectingstructureprovesparsistencyproposedmethodapplydatasetLIFECODESbirthcohortinvestigatorsinterestedunderstanding21toxicantbiomarkers8-isoprostanemeasureoxidativestressimplementationavailablehiglassopackageaccessibleComprehensiveArchiveNetworkanalyzingGroupInteractionNonlinearityStrong

Similar Articles

Cited By (1)