Comparison of parametric and semi-parametric models with randomly right-censored data by weighted estimators: Two applications in colon cancer and hepatocellular carcinoma datasets.

İsmail Yenilmez, Ersin Yılmaz, Yeliz Mert Kantar, Dursun Aydın
Author Information
  1. İsmail Yenilmez: Department of Statistics, 522675Eskişehir Technical University, Eskişehir, Turkey. ORCID
  2. Ersin Yılmaz: Department of Statistics, 52986Muğla Sitki Koçman University, Muğla, Turkey. ORCID
  3. Yeliz Mert Kantar: Department of Statistics, 522675Eskişehir Technical University, Eskişehir, Turkey.
  4. Dursun Aydın: Department of Statistics, 52986Muğla Sitki Koçman University, Muğla, Turkey.

Abstract

In this study, parametric and semi-parametric regression models are examined for random right censorship. The components of the aforementioned regression models are estimated with weights based on Cox and Kaplan-Meier estimates, which are semi-parametric and nonparametric methods used in survival analysis, respectively. The Tobit based on weights obtained from a Cox regression is handled as a parametric model instead of other parametric models requiring distribution assumptions such as exponential, Weibull, and gamma distributions. Also, the semi-parametric smoothing spline and the semi-parametric smoothing kernel estimators based on Kaplan-Meier weights are used. Therefore, estimates are obtained from two models with flexible approaches. To show the flexible shape of the models depending on the weights, Monte Carlo simulations are conducted, and all results are presented and discussed. Two empirical datasets are used to show the performance of the aforementioned estimators. Although three approaches gave similar results to each other, the semi-parametric approach was slightly superior to the parametric approach. The parametric approach method, on the other hand, yields good results in medium and large sample sizes and at a high censorship level. All other findings have been shared and interpreted.

Keywords

MeSH Term

Carcinoma, Hepatocellular
Colonic Neoplasms
Computer Simulation
Humans
Liver Neoplasms
Models, Statistical
Survival Analysis

Word Cloud

Created with Highcharts 10.0.0parametricsemi-parametricmodelsweightsregressionbasedusedsmoothingresultsapproachcensorshipaforementionedCoxKaplan-MeierestimatesTobitobtainedsplineestimatorsflexibleapproachesshowTwodatasetsmethodright-censoreddatastudyexaminedrandomrightcomponentsestimatednonparametricmethodssurvivalanalysisrespectivelyhandledmodelinsteadrequiringdistributionassumptionsexponentialWeibullgammadistributionsAlsokernelThereforetwoshapedependingMonteCarlosimulationsconductedpresenteddiscussedempiricalperformanceAlthoughthreegavesimilarslightlysuperiorhandyieldsgoodmediumlargesamplesizeshighlevelfindingssharedinterpretedComparisonrandomlyweightedestimators:applicationscoloncancerhepatocellularcarcinomaKaplan–MeierKernelestimatorRandomlyinverseprobabilitycensored

Similar Articles

Cited By