Differential Effect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial and Alveolar Lung Mucosa Models: Implications for Pathogenicity.

Mizanur Rahman, Martin Irmler, Sandeep Keshavan, Micol Introna, Johannes Beckers, Lena Palmberg, Gunnar Johanson, Koustav Ganguly, Swapna Upadhyay
Author Information
  1. Mizanur Rahman: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden.
  2. Martin Irmler: Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany.
  3. Sandeep Keshavan: Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland. ORCID
  4. Micol Introna: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden. ORCID
  5. Johannes Beckers: Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany. ORCID
  6. Lena Palmberg: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden.
  7. Gunnar Johanson: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden. ORCID
  8. Koustav Ganguly: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden. ORCID
  9. Swapna Upadhyay: Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17 177 Stockholm, Sweden.

Abstract

BACKGROUND: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit. The spike protein is the primary target of neutralizing antibodies generated following infection, and constitutes the viral component of mRNA-based COVID-19 vaccines.
METHODS: Therefore, in this work we assessed the effect of exposure (24 h) to 10 nM SARS-CoV-2 recombinant S1 protein on physiologically relevant human bronchial (bro) and alveolar (alv) lung mucosa models cultured at air-liquid interface (ALI) ( = 6 per exposure condition). Corresponding sham exposed samples served as a control. The bro-ALI model was developed using primary bronchial epithelial cells and the alv-ALI model using representative type II pneumocytes (NCI-H441).
RESULTS: Exposure to S1 protein induced the surface expression of ACE2, toll like receptor (TLR) 2, and TLR4 in both bro-ALI and alv-ALI models. Transcript expression analysis identified 117 (bro-ALI) and 97 (alv-ALI) differentially regulated genes ( ≤ 0.01). Pathway analysis revealed enrichment of canonical pathways such as interferon (IFN) signaling, influenza, coronavirus, and anti-viral response in the bro-ALI. Secreted levels of interleukin (IL) 4 and IL12 were significantly ( < 0.05) increased, whereas IL6 decreased in the bro-ALI. In the case of alv-ALI, enriched terms involving p53, APRIL (a proliferation-inducing ligand) tight junction, integrin kinase, and IL1 signaling were identified. These terms are associated with lung fibrosis. Further, significantly ( < 0.05) increased levels of secreted pro-inflammatory cytokines IFNγ, IL1ꞵ, IL2, IL4, IL6, IL8, IL10, IL13, and tumor necrosis factor alpha were detected in alv-ALI, whereas IL12 was decreased. Altered levels of these cytokines are also associated with lung fibrotic response.
CONCLUSIONS: In conclusion, we observed a typical anti-viral response in the bronchial model and a pro-fibrotic response in the alveolar model. The bro-ALI and alv-ALI models may serve as an easy and robust platform for assessing the pathogenicity of SARS-CoV-2 variants of concern at different lung regions.

Keywords

References

  1. EMBO Mol Med. 2012 Sep;4(9):939-51 [PMID: 22684844]
  2. Eur Respir J Suppl. 2001 Dec;34:3s-17s [PMID: 12392030]
  3. Front Immunol. 2020 Sep 29;11:585647 [PMID: 33133104]
  4. Diabetes. 2020 Dec;69(12):2691-2699 [PMID: 33024003]
  5. J Clin Med. 2021 Sep 02;10(17): [PMID: 34501430]
  6. Eur Respir J. 2020 Oct 8;56(4): [PMID: 32764117]
  7. Virchows Arch. 2010 Nov;457(5):563-75 [PMID: 20857141]
  8. Nat Immunol. 2021 Jul;22(7):829-838 [PMID: 33963333]
  9. Toxicol Sci. 2018 Jul 1;164(1):21-30 [PMID: 29534242]
  10. Nat Immunol. 2021 Jul;22(7):801-802 [PMID: 34103714]
  11. J Cell Biochem. 2018 Nov 2;: [PMID: 30390331]
  12. Sci Rep. 2020 Nov 24;10(1):20460 [PMID: 33235237]
  13. Int Arch Allergy Immunol. 2003 Oct;132(2):168-76 [PMID: 14600429]
  14. Nat Rev Microbiol. 2021 Jul;19(7):409-424 [PMID: 34075212]
  15. Int J Biochem Cell Biol. 2008;40(10):2174-82 [PMID: 18395486]
  16. PLoS One. 2017 Jan 20;12(1):e0170428 [PMID: 28107509]
  17. J Med Virol. 2021 May;93(5):2735-2739 [PMID: 33506952]
  18. FEBS Lett. 1992 May 18;302(3):231-4 [PMID: 1601130]
  19. Nanotoxicology. 2019 Dec;13(10):1362-1379 [PMID: 31462114]
  20. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  21. J Cell Physiol. 1996 May;167(2):290-6 [PMID: 8613470]
  22. Toxicol In Vitro. 2019 Dec;61:104617 [PMID: 31381966]
  23. Nat Commun. 2020 Oct 28;11(1):5453 [PMID: 33116139]
  24. Hum Gene Ther. 2018 Nov;29(11):1242-1251 [PMID: 29598007]
  25. Cell Death Discov. 2021 Mar 15;7(1):52 [PMID: 33723241]
  26. Vascul Pharmacol. 2021 Apr;137:106823 [PMID: 33232769]
  27. Mediators Inflamm. 2021 Jan 14;2021:8874339 [PMID: 33505220]
  28. Am J Physiol Lung Cell Mol Physiol. 2011 Mar;300(3):L341-53 [PMID: 21131395]
  29. Int Immunopharmacol. 2021 Nov;100:108145 [PMID: 34547678]
  30. Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198 [PMID: 31066453]
  31. J Rheumatol. 2007 Oct;34(10):2056-62 [PMID: 17896803]
  32. Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183205 [PMID: 32001212]
  33. Elife. 2020 Nov 09;9: [PMID: 33164751]
  34. Virus Res. 2009 Jun;142(1-2):19-27 [PMID: 19185596]
  35. Vaccines (Basel). 2021 Jan 11;9(1): [PMID: 33440640]
  36. Mol Aspects Med. 2019 Feb;65:56-69 [PMID: 30130563]
  37. Chest. 1993 Jul;104(1):47-53 [PMID: 8325116]
  38. J Med Virol. 2021 Jan;93(1):250-256 [PMID: 32592501]
  39. J Immunol. 1993 May 1;150(9):4188-96 [PMID: 8473757]
  40. Am J Physiol Lung Cell Mol Physiol. 2001 Jul;281(1):L92-7 [PMID: 11404251]
  41. Am J Physiol Lung Cell Mol Physiol. 2018 Jan 1;314(1):L127-L136 [PMID: 28860143]
  42. Elife. 2021 Dec 06;10: [PMID: 34866574]
  43. Semin Immunopathol. 2016 Jul;38(4):517-34 [PMID: 27001429]
  44. Arch Virol. 2021 Mar;166(3):675-696 [PMID: 33462671]
  45. Intern Emerg Med. 2020 Oct;15(7):1333-1334 [PMID: 32415560]
  46. Am J Pathol. 2003 Jul;163(1):345-54 [PMID: 12819039]
  47. J Clin Invest. 2007 Dec;117(12):3786-99 [PMID: 17992263]
  48. Immunol Rev. 2021 Jul;302(1):228-240 [PMID: 34028807]
  49. Am J Respir Cell Mol Biol. 2003 Oct;29(4):490-8 [PMID: 12714376]
  50. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]

Grants

  1. LP: 2018-03233/Swedish Research Council
  2. SU-COVID (2020-2021)/IMM strategic grant
  3. (KG: 20200776)/Swedish Heart Lung Foundation

MeSH Term

Angiotensin-Converting Enzyme 2
Bronchi
Cytokines
Gene Expression Profiling
Humans
Lung
Models, Biological
Protein Interaction Domains and Motifs
Recombinant Proteins
Respiratory Mucosa
SARS-CoV-2
Spike Glycoprotein, Coronavirus
Toll-Like Receptor 2
Toll-Like Receptor 4

Chemicals

Cytokines
Recombinant Proteins
Spike Glycoprotein, Coronavirus
TLR2 protein, human
TLR4 protein, human
Toll-Like Receptor 2
Toll-Like Receptor 4
spike protein, SARS-CoV-2
ACE2 protein, human
Angiotensin-Converting Enzyme 2

Word Cloud

Similar Articles

Cited By