Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617.

Lei Peng, Yingxia Hu, Madeleine C Mankowski, Ping Ren, Rita E Chen, Jin Wei, Min Zhao, Tongqing Li, Therese Tripler, Lupeng Ye, Ryan D Chow, Zhenhao Fang, Chunxiang Wu, Matthew B Dong, Matthew Cook, Guilin Wang, Paul Clark, Bryce Nelson, Daryl Klein, Richard Sutton, Michael S Diamond, Craig B Wilen, Yong Xiong, Sidi Chen
Author Information
  1. Lei Peng: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
  2. Yingxia Hu: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  3. Madeleine C Mankowski: Department of Laboratory Medicine, Yale University, New Haven, CT, USA.
  4. Ping Ren: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
  5. Rita E Chen: Departments of Medicine and Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
  6. Jin Wei: Department of Laboratory Medicine, Yale University, New Haven, CT, USA.
  7. Min Zhao: Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA.
  8. Tongqing Li: Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
  9. Therese Tripler: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  10. Lupeng Ye: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
  11. Ryan D Chow: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
  12. Zhenhao Fang: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
  13. Chunxiang Wu: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  14. Matthew B Dong: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
  15. Matthew Cook: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  16. Guilin Wang: Yale Center for Genome Analysis, Yale University, New Haven, CT, USA.
  17. Paul Clark: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
  18. Bryce Nelson: Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
  19. Daryl Klein: Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
  20. Richard Sutton: Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, USA.
  21. Michael S Diamond: Departments of Medicine and Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
  22. Craig B Wilen: Department of Laboratory Medicine, Yale University, New Haven, CT, USA.
  23. Yong Xiong: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
  24. Sidi Chen: Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.

Abstract

COVID-19 pathogen SARS-CoV-2 has infected hundreds of millions and caused over 5 million deaths to date. Although multiple vaccines are available, breakthrough infections occur especially by emerging variants. Effective therapeutic options such as monoclonal antibodies (mAbs) are still critical. Here, we report the development, cryo-EM structures, and functional analyses of mAbs that potently neutralize SARS-CoV-2 variants of concern. By high-throughput single cell sequencing of B cells from spike receptor binding domain (RBD) immunized animals, we identified two highly potent SARS-CoV-2 neutralizing mAb clones that have single-digit nanomolar affinity and low-picomolar avidity, and generated a bispecific antibody. Lead antibodies showed strong inhibitory activity against historical SARS-CoV-2 and several emerging variants of concern. We solved several cryo-EM structures at ∼3 Å resolution of these neutralizing antibodies in complex with prefusion spike trimer ectodomain, and revealed distinct epitopes, binding patterns, and conformations. The lead clones also showed potent efficacy against authentic SARS-CoV-2 in both prophylactic and therapeutic settings. We also generated and characterized a humanized antibody to facilitate translation and drug development. The humanized clone also has strong potency against both the original virus and the B.1.617.2 Delta variant. These mAbs expand the repertoire of therapeutics against SARS-CoV-2 and emerging variants.

References

  1. N Engl J Med. 2021 Jun 10;384(23):2212-2218 [PMID: 33882219]
  2. Cell. 2020 Aug 20;182(4):812-827.e19 [PMID: 32697968]
  3. Clin Infect Dis. 2022 Jan 29;74(2):366-368 [PMID: 33961693]
  4. Cell. 2021 Jan 7;184(1):76-91.e13 [PMID: 33147444]
  5. Commun Biol. 2019 Jun 19;2:218 [PMID: 31240256]
  6. Cell Host Microbe. 2021 Jul 14;29(7):1124-1136.e11 [PMID: 34171266]
  7. Science. 2020 Aug 21;369(6506):1010-1014 [PMID: 32540901]
  8. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  9. Science. 2020 Mar 13;367(6483):1260-1263 [PMID: 32075877]
  10. J Immunol. 2020 Aug 15;205(4):915-922 [PMID: 32591393]
  11. Int Immunopharmacol. 2020 Aug;85:106639 [PMID: 32473573]
  12. J Biol Regul Homeost Agents. 2021 Feb 24;35(1):1-4 [PMID: 33377359]
  13. Nature. 2020 Dec;588(7838):498-502 [PMID: 32805734]
  14. Nat Methods. 2012 Sep;9(9):853-4 [PMID: 22842542]
  15. Lancet. 2021 Jun 19;397(10292):2331-2333 [PMID: 34090624]
  16. Science. 2021 Aug 13;373(6556):818-823 [PMID: 34016740]
  17. Cell. 2019 Dec 12;179(7):1636-1646.e15 [PMID: 31787378]
  18. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67 [PMID: 21460454]
  19. Cell. 2020 Jul 9;182(1):73-84.e16 [PMID: 32425270]
  20. J Exp Med. 2020 Nov 2;217(11): [PMID: 32692348]
  21. Protein Cell. 2021 Oct;12(10):751-755 [PMID: 33237441]
  22. Cell Rep. 2020 Jan 21;30(3):905-913.e6 [PMID: 31968262]
  23. Nature. 2021 Apr;592(7854):438-443 [PMID: 33690265]
  24. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  25. Nat Rev Immunol. 2021 Jun;21(6):382-393 [PMID: 33875867]
  26. Nat Commun. 2020 May 4;11(1):2251 [PMID: 32366817]
  27. J Struct Biol. 2015 Nov;192(2):216-21 [PMID: 26278980]
  28. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  29. N Engl J Med. 2021 Jan 21;384(3):229-237 [PMID: 33113295]
  30. Nature. 2020 Aug;584(7821):450-456 [PMID: 32698192]
  31. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  32. Annu Rev Virol. 2016 Sep 29;3(1):237-261 [PMID: 27578435]
  33. Asian J Pharm Sci. 2021 Jan;16(1):4-23 [PMID: 32837565]
  34. Viruses. 2012 Jun;4(6):1011-33 [PMID: 22816037]
  35. J Infect. 2022 Jan;84(1):94-118 [PMID: 34364949]
  36. Nat Commun. 2020 Nov 30;11(1):6122 [PMID: 33257679]
  37. Commun Biol. 2019 Aug 9;2:304 [PMID: 31428692]
  38. Nat Med. 2021 Jul;27(7):1131-1133 [PMID: 34045737]
  39. Cell. 2021 Jul 22;184(15):3936-3948.e10 [PMID: 34192529]
  40. Sci Adv. 2021 Jan 1;7(1): [PMID: 33277323]
  41. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544 [PMID: 29872004]
  42. J Mol Biol. 2003 Oct 31;333(4):721-45 [PMID: 14568533]
  43. J Travel Med. 2022 Sep 17;29(6): [PMID: 35704033]
  44. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11187-92 [PMID: 21690412]
  45. Science. 2020 Aug 21;369(6506):1014-1018 [PMID: 32540904]
  46. N Engl J Med. 2021 Mar 8;384(15):1466-1468 [PMID: 33684280]
  47. Cell Host Microbe. 2021 Mar 10;29(3):477-488.e4 [PMID: 33535027]
  48. Nat Commun. 2021 Jan 12;12(1):288 [PMID: 33436577]
  49. Science. 2021 Apr 9;372(6538): [PMID: 33658326]
  50. Immunity. 2021 Oct 12;54(10):2399-2416.e6 [PMID: 34481543]
  51. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  52. Cell. 2021 Apr 29;184(9):2348-2361.e6 [PMID: 33730597]
  53. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  54. Nature. 2021 Mar;591(7851):639-644 [PMID: 33461210]
  55. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  56. Nat Commun. 2021 Jan 11;12(1):264 [PMID: 33431876]
  57. BMJ. 2021 Jun 21;373:n1596 [PMID: 34154997]
  58. Cell. 2021 Apr 15;184(8):2201-2211.e7 [PMID: 33743891]
  59. J Virol. 2007 Jan;81(2):813-21 [PMID: 17079315]
  60. Nat Microbiol. 2021 Mar;6(3):415 [PMID: 33514928]
  61. Nature. 2021 Aug;596(7870):103-108 [PMID: 34153975]
  62. Nature. 2020 Aug;584(7821):443-449 [PMID: 32668443]
  63. Nature. 2021 May;593(7858):270-274 [PMID: 33723411]
  64. J Struct Biol. 2005 Oct;152(1):36-51 [PMID: 16182563]
  65. Nature. 2021 Jan;589(7843):603-607 [PMID: 33166988]
  66. Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):814-840 [PMID: 30198894]
  67. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  68. Cell. 2020 Nov 12;183(4):1024-1042.e21 [PMID: 32991844]
  69. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  70. Science. 2016 Mar 18;351(6279):1339-42 [PMID: 26917593]
  71. Cell Host Microbe. 2020 Dec 9;28(6):867-879.e5 [PMID: 33271067]
  72. Cell. 2021 Jun 10;184(12):3192-3204.e16 [PMID: 33974910]
  73. Nature. 2020 May;581(7807):215-220 [PMID: 32225176]
  74. J Autoimmun. 2022 Jan;126:102779 [PMID: 34915422]
  75. Nature. 2021 May;593(7857):130-135 [PMID: 33684923]
  76. Cell Mol Immunol. 2020 Jul;17(7):765-767 [PMID: 32047258]
  77. Nat Microbiol. 2020 Nov;5(11):1403-1407 [PMID: 32669681]
  78. JAMA. 2021 May 11;325(18):1896-1898 [PMID: 33739374]
  79. J Struct Biol. 2012 Dec;180(3):519-30 [PMID: 23000701]

Grants

  1. R01 AI157155/NIAID NIH HHS
  2. S10 OD018521/NIH HHS
  3. R01 AI148467/NIAID NIH HHS
  4. R01 AI150334/NIAID NIH HHS
  5. K08 AI128043/NIAID NIH HHS