Super-multiplexed vibrational probes: Being colorful makes a difference.

Naixin Qian, Wei Min
Author Information
  1. Naixin Qian: Department of Chemistry, Columbia University, New York, NY, 10027, USA.
  2. Wei Min: Department of Chemistry, Columbia University, New York, NY, 10027, USA. Electronic address: wm2256@columbia.edu.

Abstract

Biological systems with intrinsic complexity require multiplexing techniques to comprehensively describe the phenotype, interaction, and heterogeneity. Recent years have witnessed the development of super-multiplexed vibrational microscopy, overcoming the 'color barrier' of fluorescence-based optical techniques. Here, we will review the recent progress in the design and applications of super-multiplexed vibrational probes. We hope to illustrate how rainbow-like vibrational colors can be generated from systematic studies on structure-spectroscopy relationships and how being colorful makes a difference to various biomedical applications.

Keywords

References

  1. J Phys Chem Lett. 2019 Jul 5;10(13):3563-3570 [PMID: 31185166]
  2. J Am Chem Soc. 2012 Dec 26;134(51):20681-9 [PMID: 23198907]
  3. Science. 2015 Apr 24;348(6233):aaa6090 [PMID: 25858977]
  4. Nat Commun. 2021 Feb 26;12(1):1305 [PMID: 33637723]
  5. J Phys Chem B. 2018 Oct 4;122(39):9218-9224 [PMID: 30208710]
  6. Nat Rev Neurosci. 2020 Feb;21(2):61-79 [PMID: 31896771]
  7. Science. 2018 Aug 3;361(6401): [PMID: 30072512]
  8. J Chem Phys. 2021 Apr 7;154(13):135102 [PMID: 33832245]
  9. Analyst. 2017 Oct 23;142(21):4018-4029 [PMID: 28875184]
  10. Nat Biotechnol. 2018 Dec 17;: [PMID: 30556815]
  11. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  12. Nat Biotechnol. 2022 Mar;40(3):364-373 [PMID: 34608326]
  13. Cell Syst. 2016 Apr 27;2(4):225-38 [PMID: 27135535]
  14. Cell. 2018 Sep 20;175(1):266-276.e13 [PMID: 30166209]
  15. Chem Rev. 2017 Jun 28;117(12):7910-7963 [PMID: 28534612]
  16. Neuron. 2020 May 6;106(3):369-387 [PMID: 32380050]
  17. Nature. 2020 Jun;582(7811):277-282 [PMID: 32349121]
  18. Nat Commun. 2021 Jul 26;12(1):4518 [PMID: 34312393]
  19. RSC Adv. 2019 Aug 2;9(41):23973-23978 [PMID: 35530627]
  20. Nat Methods. 2020 Aug;17(8):844-851 [PMID: 32601425]
  21. Nat Methods. 2014 Apr;11(4):417-22 [PMID: 24584193]
  22. J Am Chem Soc. 2014 Jun 4;136(22):8027-33 [PMID: 24849912]
  23. Angew Chem Int Ed Engl. 2021 Sep 27;60(40):21846-21852 [PMID: 34227191]
  24. Opt Lett. 2021 May 01;46(9):2176-2179 [PMID: 33929447]
  25. Nat Methods. 2018 Mar;15(3):194-200 [PMID: 29334378]
  26. Nat Methods. 2021 Jan;18(1):18-22 [PMID: 33408406]
  27. Cell. 2018 Aug 9;174(4):968-981.e15 [PMID: 30078711]
  28. Nat Commun. 2020 Jan 3;11(1):81 [PMID: 31900403]
  29. Nat Methods. 2014 Apr;11(4):410-2 [PMID: 24584195]
  30. ACS Cent Sci. 2021 May 26;7(5):768-780 [PMID: 34079895]
  31. Cell. 2015 Dec 3;163(6):1500-14 [PMID: 26638076]
  32. Nat Biotechnol. 2016 Sep;34(9):973-81 [PMID: 27454740]
  33. Nat Med. 2014 Apr;20(4):436-42 [PMID: 24584119]
  34. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  35. Nat Methods. 2016 Mar;13(3):257-62 [PMID: 26808668]
  36. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  37. Anal Chem. 2019 Mar 19;91(6):3784-3789 [PMID: 30758186]
  38. Anal Chem. 2020 Jul 21;92(14):9603-9612 [PMID: 32530266]
  39. Nat Commun. 2021 May 25;12(1):3089 [PMID: 34035304]
  40. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  41. Chem Sci. 2020 Mar 2;11(11):3096-3103 [PMID: 34122814]
  42. Nat Commun. 2021 Jun 7;12(1):3405 [PMID: 34099708]
  43. Chem Commun (Camb). 2017 Jun 6;53(46):6187-6190 [PMID: 28474031]
  44. J Phys Chem Lett. 2018 Aug 2;9(15):4294-4301 [PMID: 30001137]
  45. J Am Chem Soc. 2020 Dec 9;142(49):20701-20707 [PMID: 33225696]
  46. Annu Rev Biophys. 2019 May 6;48:347-369 [PMID: 30892920]
  47. J Chem Phys. 2020 Dec 7;153(21):210901 [PMID: 33291903]
  48. Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13455-13458 [PMID: 28851103]
  49. Science. 2011 Nov 4;334(6056):618-23 [PMID: 22053041]
  50. Nat Biotechnol. 2001 Jul;19(7):631-5 [PMID: 11433273]
  51. Small. 2016 Oct;12(40):5612-5621 [PMID: 27571395]
  52. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  53. Nat Methods. 2006 May;3(5):361-8 [PMID: 16628206]
  54. Nature. 2017 Jun 1;546(7656):162-167 [PMID: 28538724]
  55. Nat Methods. 2021 Sep;18(9):997-1012 [PMID: 34341583]
  56. ACS Nano. 2018 Oct 23;12(10):9669-9679 [PMID: 30203645]
  57. Cell. 2020 Sep 17;182(6):1641-1659.e26 [PMID: 32822575]
  58. J Am Chem Soc. 2011 Apr 27;133(16):6102-5 [PMID: 21443184]
  59. iScience. 2021 Jul 09;24(8):102832 [PMID: 34381966]

Grants

  1. R01 EB029523/NIBIB NIH HHS
  2. R01 GM128214/NIGMS NIH HHS
  3. R01 GM132860/NIGMS NIH HHS

MeSH Term

Microscopy
Spectrum Analysis, Raman
Vibration

Word Cloud

Created with Highcharts 10.0.0vibrationaltechniquessuper-multiplexedmicroscopyapplicationsprobescolorfulmakesdifferenceRamanBiologicalsystemsintrinsiccomplexityrequiremultiplexingcomprehensivelydescribephenotypeinteractionheterogeneityRecentyearswitnesseddevelopmentovercoming'colorbarrier'fluorescence-basedopticalwillreviewrecentprogressdesignhopeillustraterainbow-likecolorscangeneratedsystematicstudiesstructure-spectroscopyrelationshipsvariousbiomedicalSuper-multiplexedprobes:MultipleximagingStimulatedscatteringVibrational

Similar Articles

Cited By