Circulating microRNAs associated with prediabetes and geographic location in Latinos.

Elena Flowers, Juan-Daniel Ram��rez-Mares, Marion Velazquez-Villafa��a, Ruben Rangel-Salazar, Anatol Sucher, Alka M Kanaya, Bradley E Aouizerat, Maria Luisa Lazo de la Vega Monroy
Author Information
  1. Elena Flowers: Department of Physiological Nursing, University of California, San Francisco, 2 Koret Way, #605L, San Francisco, CA 94143-0610, USA.
  2. Juan-Daniel Ram��rez-Mares: Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico.
  3. Marion Velazquez-Villafa��a: Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico.
  4. Ruben Rangel-Salazar: Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico.
  5. Anatol Sucher: University of California, San Francisco, San Francisco, USA.
  6. Alka M Kanaya: Department of Medicine, University of California, San Francisco, San Francisco, USA.
  7. Bradley E Aouizerat: College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, USA.
  8. Maria Luisa Lazo de la Vega Monroy: Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico.

Abstract

BACKGROUND: Globally, type 2 diabetes is highly prevalent in individuals of Latino ancestry. The reasons underlying this high prevalence are not well understood, but both genetic and lifestyle factors are contributors. Circulating microRNAs are readily detectable in blood and are promising biomarkers to characterize biological responses (i.e., changes in gene expression) to lifestyle factors. Prior studies identified relationships between circulating microRNAs and risk for type 2 diabetes, but Latinos have largely been under-represented in these study samples.
AIMS/HYPOTHESIS: The aim of this study was to assess for differences in expression levels of three candidate microRNAs (miR-126, miR-146, miR-15) between individuals who had prediabetes compared to normal glycemic status and between individuals who self-identified with Latino ancestry in the United States (US) and native Mexicans living in or near Leon, Mexico.
METHODS: This was a cross-sectional study that included 45 Mexicans and 21 Latino participants from the US. Prediabetes was defined as fasting glucose 100-125 mg/dL or 2-h post-glucose challenge between 140 and 199 mg/dL. Expression levels of microRNAs from plasma were measured by qPCR. Linear and logistic regression models were used to assess relationships between individual microRNAs and glycemic status or geographic site.
RESULTS: None of the three microRNAs was associated with risk for type 2 diabetes. MiR-146a and miR-15 were significantly lower in the study sample from Mexico compared to the US. There was a significant interaction between miR-146a and BMI associated with fasting blood glucose.
CONCLUSIONS/INTERPRETATION: This study did not replicate in Latinos prior observations from other racial groups of associations between miR-126, miR-146a, and miR-15 and risk for type 2 diabetes. Future studies should consider other microRNAs related to different biological pathways as possible biomarkers for type 2 diabetes in Latinos.

Keywords

References

  1. Diabetes Care. 2010 Jul;33(7):1629-34 [PMID: 20413520]
  2. Med Sci Sports Exerc. 2003 Aug;35(8):1381-95 [PMID: 12900694]
  3. Clin Chem. 1972 Jun;18(6):499-502 [PMID: 4337382]
  4. Nucleic Acids Res. 2017 Jan 4;45(D1):D90-D96 [PMID: 27742822]
  5. Cell Physiol Biochem. 2018;51(4):1932-1944 [PMID: 30513523]
  6. Int J Mol Cell Med. 2017 Summer;6(3):156-163 [PMID: 29682487]
  7. PLoS One. 2013 Sep 02;8(9):e73272 [PMID: 24023848]
  8. JAMA. 2014 Jun 11;311(22):2305-14 [PMID: 24915262]
  9. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  10. Circ Res. 2010 Sep 17;107(6):810-7 [PMID: 20651284]
  11. Mol Cell Biochem. 2011 May;351(1-2):197-205 [PMID: 21249428]
  12. Exp Ther Med. 2018 Mar;15(3):2655-2660 [PMID: 29467857]
  13. PLoS One. 2016 Apr 21;11(4):e0152545 [PMID: 27101373]
  14. Int J Mol Sci. 2014 Jun 12;15(6):10567-77 [PMID: 24927146]
  15. Diabetologia. 2015 May;58(5):900-11 [PMID: 25677225]
  16. Physiol Genomics. 2015 Jan 1;47(1):1-11 [PMID: 25465031]
  17. J Diabetes Complications. 2014 May-Jun;28(3):406-12 [PMID: 24418351]
  18. J Med Biochem. 2018 Dec 01;37(4):499-506 [PMID: 30584410]
  19. Metabolism. 2015 Sep;64(9):1051-9 [PMID: 26031505]
  20. J Vasc Res. 2016;53(1-2):94-104 [PMID: 27673690]
  21. Exp Biol Med (Maywood). 2016 Jun;241(12):1323-31 [PMID: 27302176]
  22. Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8954-61 [PMID: 20445096]
  23. Arch Intern Med. 2008 Aug 11;168(15):1617-24 [PMID: 18695075]
  24. Cardiovasc Diabetol. 2013 Nov 13;12:170 [PMID: 24225161]
  25. Biomark Res. 2015 Oct 13;3:22 [PMID: 26966540]
  26. Biomarkers. 2017 May - Jun;22(3-4):268-278 [PMID: 27321479]
  27. Jacobs J Diabetes Endocrinol. 2016 Dec;2(1): [PMID: 29399662]
  28. PLoS One. 2014 Jan 30;9(1):e86792 [PMID: 24497980]
  29. Circulation. 2009 Oct 20;120(16):1640-5 [PMID: 19805654]
  30. Exp Clin Endocrinol Diabetes. 2013 Jun;121(6):347-53 [PMID: 23616185]
  31. Atherosclerosis. 2011 Nov;219(1):211-7 [PMID: 21820659]
  32. PLoS One. 2014 Dec 12;9(12):e115209 [PMID: 25500583]
  33. Am J Physiol Endocrinol Metab. 2016 May 15;310(10):E828-37 [PMID: 26956185]
  34. Mol Ther Nucleic Acids. 2018 Sep 7;12:146-157 [PMID: 30195754]
  35. Biochem Biophys Res Commun. 2015 Jul 17-24;463(1-2):60-3 [PMID: 25986735]
  36. Brief Bioinform. 2016 Mar;17(2):204-12 [PMID: 26238539]
  37. Am J Hum Genet. 2016 Jan 7;98(1):165-84 [PMID: 26748518]
  38. Diabetes Care. 2014;37(5):1375-83 [PMID: 24478399]
  39. Sci Rep. 2019 Feb 7;9(1):1584 [PMID: 30733582]
  40. Sci Rep. 2016 Dec 06;6:38339 [PMID: 27922090]
  41. Metabolism. 2018 Jan;78:95-105 [PMID: 28966078]
  42. Nature. 2014 Feb 6;506(7486):97-101 [PMID: 24390345]
  43. Salud Publica Mex. 2014 Jul-Aug;56(4):317-22 [PMID: 25604171]
  44. Oncotarget. 2015 Nov 3;6(34):35372-82 [PMID: 26498351]
  45. Diabetologia. 2015 Sep;58(9):1978-92 [PMID: 26155747]
  46. Clin Chem. 2013 May;59(5):781-92 [PMID: 23396142]
  47. Nature. 2001 Jan 18;409(6818):307-12 [PMID: 11201732]
  48. J Endocrinol. 2017 Aug;234(2):201-216 [PMID: 28576870]

Grants

  1. KL2 TR000143/NCATS NIH HHS
  2. R01 AT004569/NCCIH NIH HHS
  3. P30 DK098722/NIDDK NIH HHS
  4. P30 DK092924/NIDDK NIH HHS
  5. R21 DK117346/NIDDK NIH HHS

Word Cloud

Created with Highcharts 10.0.0microRNAstype2diabetesstudyLatinosindividualsLatinobloodriskmiR-15USglucoseassociatedancestrylifestylefactorsCirculatingbiomarkersbiologicalexpressionstudiesrelationshipsassesslevelsthreemiR-126prediabetescomparedglycemicstatusMexicansMexicofastingmg/dLgeographicmiR-146aBACKGROUND:GloballyhighlyprevalentreasonsunderlyinghighprevalencewellunderstoodgeneticcontributorsreadilydetectablepromisingcharacterizeresponsesiechangesgenePrioridentifiedcirculatinglargelyunder-representedsamplesAIMS/HYPOTHESIS:aimdifferencescandidatemiR-146normalself-identifiedUnitedStatesnativelivingnearLeonMETHODS:cross-sectionalincluded4521participantsPrediabetesdefined100-1252-hpost-glucosechallenge140199ExpressionplasmameasuredqPCRLinearlogisticregressionmodelsusedindividualsiteRESULTS:NoneMiR-146asignificantlylowersamplesignificantinteractionBMICONCLUSIONS/INTERPRETATION:replicatepriorobservationsracialgroupsassociationsFutureconsiderrelateddifferentpathwayspossiblelocationBiomarkerDiabetesFastingmicroRNA

Similar Articles

Cited By