Quantitative Stimulated Raman Scattering Microscopy: Promises and Pitfalls.

Bryce Manifold, Dan Fu
Author Information
  1. Bryce Manifold: Department of Chemistry, University of Washington, Seattle, Washington, USA; email: danfu@uw.edu.
  2. Dan Fu: Department of Chemistry, University of Washington, Seattle, Washington, USA; email: danfu@uw.edu.

Abstract

Since its first demonstration, stimulated Raman scattering (SRS) microscopy has become a powerful chemical imaging tool that shows promise in numerous biological and biomedical applications. The spectroscopic capability of SRS enables identification and tracking of specific molecules or classes of molecules, often without labeling. SRS microscopy also has the hallmark advantage of signal strength that is directly proportional to molecular concentration, allowing for in situ quantitative analysis of chemical composition of heterogeneous samples with submicron spatial resolution and subminute temporal resolution. However, it is important to recognize that quantification through SRS microscopy requires assumptions regarding both system and sample. Such assumptions are often taken axiomatically, which may lead to erroneous conclusions without proper validation. In this review, we focus on the tacitly accepted, yet complex, quantitative aspect of SRS microscopy. We discuss the various approaches to quantitative analysis, examples of such approaches, challenges in different systems, and potential solutions. Through our examination of published literature, we conclude that a scrupulous approach to experimental design can further expand the powerful and incisive quantitative capabilities of SRS microscopy.

Keywords

References

  1. Analyst. 2019 Jan 28;144(3):753-765 [PMID: 30357117]
  2. Biomed Opt Express. 2018 Nov 08;9(12):6116-6131 [PMID: 31065417]
  3. Nat Commun. 2021 Jul 26;12(1):4518 [PMID: 34312393]
  4. J Phys Chem B. 2013 Apr 25;117(16):4634-40 [PMID: 23256635]
  5. Opt Express. 2006 Jan 9;14(1):260-9 [PMID: 19503339]
  6. Analyst. 2018 Oct 8;143(20):4844-4848 [PMID: 30246812]
  7. J Phys Chem Lett. 2019 Jul 5;10(13):3563-3570 [PMID: 31185166]
  8. Nat Commun. 2019 Oct 18;10(1):4764 [PMID: 31628307]
  9. J Chem Phys. 2020 May 7;152(17):174201 [PMID: 32384848]
  10. Nat Biomed Eng. 2019 May;3(5):402-413 [PMID: 31036888]
  11. Anal Chem. 2020 Nov 3;92(21):14657-14666 [PMID: 33090767]
  12. Curr Opin Chem Biol. 2017 Aug;39:24-31 [PMID: 28544970]
  13. Nat Biotechnol. 2003 Nov;21(11):1369-77 [PMID: 14595365]
  14. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  15. ACS Cent Sci. 2020 Apr 22;6(4):478-486 [PMID: 32341997]
  16. Cold Spring Harb Protoc. 2014 Oct 01;2014(10):pdb.top071795 [PMID: 25275114]
  17. Angew Chem Int Ed Engl. 2014 May 26;53(22):5596-9 [PMID: 24737659]
  18. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11226-31 [PMID: 23798434]
  19. Nat Rev Nephrol. 2021 Feb;17(2):128-144 [PMID: 32948857]
  20. J Biophotonics. 2017 Sep;10(9):1217-1226 [PMID: 28164480]
  21. Nanomaterials (Basel). 2019 Mar 03;9(3): [PMID: 30832394]
  22. Chem Commun (Camb). 2018 Jan 7;54(2):152-155 [PMID: 29218356]
  23. Anal Chem. 2019 Aug 6;91(15):9333-9342 [PMID: 31287649]
  24. J Biomed Opt. 2007 Sep-Oct;12(5):054004 [PMID: 17994892]
  25. Bioessays. 2017 Aug;39(8): [PMID: 28749075]
  26. Sci Transl Med. 2015 Oct 14;7(309):309ra163 [PMID: 26468325]
  27. Anal Chem. 2016 May 3;88(9):4931-9 [PMID: 27041129]
  28. Opt Express. 2013 Jun 3;21(11):13864-74 [PMID: 23736639]
  29. J Histochem Cytochem. 2011 Feb;59(2):129-38 [PMID: 21339178]
  30. J Raman Spectrosc. 2017 Jun;48(6):803-812 [PMID: 28943709]
  31. Phys Rev Lett. 2014 Feb 7;112(5):053905 [PMID: 24580595]
  32. Anal Chem. 2020 Jan 7;92(1):740-748 [PMID: 31750649]
  33. Biomed Opt Express. 2019 Jul 10;10(8):3860-3874 [PMID: 31452980]
  34. Nat Biomed Eng. 2017;1: [PMID: 28955599]
  35. Methods Cell Biol. 2014;123:1-18 [PMID: 24974019]
  36. Anal Chem. 2019 May 21;91(10):6894-6901 [PMID: 31009215]
  37. Nat Methods. 2011 Feb;8(2):135-8 [PMID: 21240281]
  38. J Med Chem. 2020 Mar 12;63(5):2028-2034 [PMID: 31829628]
  39. Nat Commun. 2015 Apr 17;6:6784 [PMID: 25881792]
  40. J Invest Dermatol. 2021 Feb;141(2):395-403 [PMID: 32710899]
  41. Quant Imaging Med Surg. 2021 Mar;11(3):1078-1101 [PMID: 33654679]
  42. Anal Chem. 2019 Feb 5;91(3):2279-2287 [PMID: 30589537]
  43. Anal Chem. 2020 Oct 6;92(19):13182-13191 [PMID: 32907318]
  44. Biomed Opt Express. 2020 Jan 13;11(2):762-774 [PMID: 32133223]
  45. Light Sci Appl. 2018 Oct 24;7:81 [PMID: 30374403]
  46. Mol Biol Cell. 2018 Jul 1;29(13):1519-1525 [PMID: 29953344]
  47. Sci Rep. 2019 Dec 31;9(1):20392 [PMID: 31892723]
  48. Mol Pharm. 2018 Dec 3;15(12):5793-5801 [PMID: 30362772]
  49. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  50. Analyst. 2015 Jun 21;140(12):3897-909 [PMID: 25811305]
  51. Sci Rep. 2014 Oct 29;4:6807 [PMID: 25351207]
  52. Opt Lett. 1982 Aug 1;7(8):350-2 [PMID: 19714017]
  53. iScience. 2020 Mar 27;23(3):100953 [PMID: 32179477]
  54. Nat Commun. 2021 May 24;12(1):3052 [PMID: 34031374]
  55. Sci Rep. 2018 Jun 15;8(1):9183 [PMID: 29907828]
  56. J Am Chem Soc. 2017 Nov 29;139(47):17022-17030 [PMID: 29111701]
  57. Chem Rev. 2013 Apr 10;113(4):2469-527 [PMID: 23410134]
  58. Sci Rep. 2021 Jun 9;11(1):12162 [PMID: 34108566]
  59. Adv Sci (Weinh). 2020 Mar 09;7(10):1903644 [PMID: 32440482]
  60. Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13394-13399 [PMID: 29196526]
  61. Nat Commun. 2020 Sep 24;11(1):4830 [PMID: 32973134]
  62. Anal Chem. 2017 Jul 5;89(13):6931-6935 [PMID: 28605893]
  63. J Am Chem Soc. 2017 Jan 18;139(2):583-586 [PMID: 28027644]
  64. Nat Commun. 2021 Jun 7;12(1):3405 [PMID: 34099708]
  65. Sci Adv. 2018 Nov 16;4(11):eaat7715 [PMID: 30456301]
  66. Phys Chem Chem Phys. 2020 Sep 30;22(37):21421-21427 [PMID: 32944723]
  67. Biotechniques. 2000 May;28(5):884-6, 888 [PMID: 10818693]
  68. J Biophotonics. 2019 Sep;12(9):e201900028 [PMID: 31081280]
  69. J Phys Chem Lett. 2020 Oct 15;11(20):8573-8578 [PMID: 32914982]
  70. Anal Chem. 2014 Sep 2;86(17):8506-13 [PMID: 25079337]
  71. Nat Commun. 2016 Oct 31;7:13283 [PMID: 27796305]
  72. Biomed Opt Express. 2019 Sep 30;10(10):5378-5384 [PMID: 31646052]
  73. Nat Mach Intell. 2021 Apr;3:306-315 [PMID: 34676358]
  74. J Phys Chem Lett. 2018 Aug 16;9(16):4679-4685 [PMID: 30067370]
  75. Anal Chem. 2013 Jan 2;85(1):98-106 [PMID: 23198914]
  76. Anal Chem. 2018 Mar 20;90(6):3737-3743 [PMID: 29461044]
  77. J Control Release. 2014 Jan 28;174:37-42 [PMID: 24231405]
  78. J Am Chem Soc. 2012 Feb 29;134(8):3623-6 [PMID: 22316340]
  79. Annu Rev Biophys. 2019 May 6;48:347-369 [PMID: 30892920]
  80. Anal Chem. 2021 Apr 20;93(15):6223-6231 [PMID: 33826297]
  81. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  82. Theranostics. 2020 Apr 27;10(13):5865-5878 [PMID: 32483424]
  83. Annu Rev Phys Chem. 2011;62:507-30 [PMID: 21453061]
  84. Theranostics. 2021 Jan 1;11(7):3074-3088 [PMID: 33537075]
  85. Sci Rep. 2018 Feb 26;8(1):3606 [PMID: 29483581]
  86. Anal Chem. 2017 Apr 18;89(8):4502-4507 [PMID: 28345862]
  87. J Raman Spectrosc. 2015 Aug;46(8):727-734 [PMID: 27478301]
  88. Angew Chem Int Ed Engl. 2013 Dec 2;52(49):13042-6 [PMID: 24127161]
  89. J Phys Chem B. 2019 Oct 10;123(40):8397-8404 [PMID: 31532680]
  90. Anal Chem. 2021 Sep 21;93(37):12786-12792 [PMID: 34505518]
  91. Nat Chem. 2014 Jul;6(7):614-22 [PMID: 24950332]
  92. Methods. 2017 Sep 1;128:119-128 [PMID: 28746829]
  93. Theranostics. 2019 Apr 13;9(9):2541-2554 [PMID: 31131052]
  94. Anal Chem. 2017 Feb 7;89(3):1716-1723 [PMID: 27983804]
  95. Analyst. 2021 Feb 7;146(3):789-802 [PMID: 33393954]
  96. J Phys Chem Lett. 2020 Sep 3;11(17):7083-7089 [PMID: 32786960]
  97. Acc Chem Res. 2014 Aug 19;47(8):2282-90 [PMID: 24871269]
  98. Theranostics. 2019 Feb 14;9(5):1348-1357 [PMID: 30867835]
  99. Light Sci Appl. 2015;4: [PMID: 26167336]

Grants

  1. R35 GM133435/NIGMS NIH HHS

MeSH Term

Microscopy
Nonlinear Optical Microscopy
Spectrum Analysis, Raman

Word Cloud

Created with Highcharts 10.0.0microscopySRSquantitativeRamanchemicalstimulatedscatteringpowerfulimagingmoleculesoftenwithoutanalysisresolutionassumptionsapproachesSincefirstdemonstrationbecometoolshowspromisenumerousbiologicalbiomedicalapplicationsspectroscopiccapabilityenablesidentificationtrackingspecificclasseslabelingalsohallmarkadvantagesignalstrengthdirectlyproportionalmolecularconcentrationallowingsitucompositionheterogeneoussamplessubmicronspatialsubminutetemporalHoweverimportantrecognizequantificationrequiresregardingsystemsampletakenaxiomaticallymayleaderroneousconclusionspropervalidationreviewfocustacitlyacceptedyetcomplexaspectdiscussvariousexampleschallengesdifferentsystemspotentialsolutionsexaminationpublishedliteratureconcludescrupulousapproachexperimentaldesigncanexpandincisivecapabilitiesQuantitativeStimulatedScatteringMicroscopy:PromisesPitfalls

Similar Articles

Cited By