Machine perfusion combined with antibiotics prevents donor-derived infections caused by multidrug-resistant bacteria.

Han Liang, Peng Zhang, Bin Yu, Zhongzhong Liu, Li Pan, Xueyu He, Xiaoli Fan, Yanfeng Wang
Author Information
  1. Han Liang: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China. ORCID
  2. Peng Zhang: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China. ORCID
  3. Bin Yu: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China. ORCID
  4. Zhongzhong Liu: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China.
  5. Li Pan: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China.
  6. Xueyu He: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China.
  7. Xiaoli Fan: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China. ORCID
  8. Yanfeng Wang: Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China. ORCID

Abstract

Donor infection affects organ utilization, especially the infections by multidrug-resistant bacteria, which may have disastrous outcomes. We established a rat model, inoculated with Escherichia coli or carbapenem-resistant Klebsiella pneumoniae (CRKP), to investigate whether hypothermic machine perfusion (HMP), normothermic machine perfusion (NMP), or static cold storage (SCS) combined with antibiotic (AB) could eliminate the bacteria. E. coli or CRKP-infected kidneys were treated with cefoperazone-sulbactam and tigecycline, respectively. The HMP+AB and NMP+AB treatments had significant therapeutic effects on E. coli or CRKP infection compared with the SCS+AB treatment. The bacterial load of CRKP-infected kidneys in the HMP+AB (22 050 ± 2884 CFU/g vs. 1900 ± 400 CFU/g, p = .007) and NMP+AB groups (25 433 ± 2059 CFU/g vs. 500 ± 458 CFU/g, p = .002) were significantly reduced, with no statistically significant difference between both groups. Subsequently, the CRKP-infected kidneys of the HMP+AB and SCS+AB groups were transplanted. The rats in the SCS+AB group were severe infected and euthanized on day 4 post-transplant. By contrast, the rats in the HMP+AB group were in good condition. In conclusion, HMP and NMP combined with AB seems to be efficient approaches to decrease bacterial load of infected kidneys. This might lead to higher utilization rates of donors with active infection.

Keywords

References

  1. Matas AJ, Payne WD. Transplantation: Increasing the use of available deceased donor kidneys. Nat Rev Urol. 2016;13(9):500-501.
  2. Malinis M, Boucher HW. Screening of donor and candidate prior to solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33(9):e13548.
  3. Ison MG, Hager J, Blumberg E, et al. Donor-derived disease transmission events in the United States: data reviewed by the OPTN/UNOS Disease Transmission Advisory Committee. Am J Transplant. 2009;9(8):1929-1935.
  4. Doig RL, Boyd PJ, Eykyn S. Staphylococcus aureus transmitted in transplanted kidneys. Lancet. 1975;2(7928):243-245.
  5. Wendt JM, Kaul D, Limbago BM, et al. Transmission of methicillin-resistant Staphylococcus aureus infection through solid organ transplantation: confirmation via whole genome sequencing. Am J Transplant. 2014;14(11):2633-2639.
  6. Holmes CL, Anderson MT, Mobley H, Bachman MA. Pathogenesis of gram-negative bacteremia. Clin Microbiol Rev. 2021;34(2): 10.1128/CMR.00234-20
  7. Bonten M, Johnson JR, van den Biggelaar A, et al. Epidemiology of Escherichia coli bacteremia: a systematic literature review. Clin Infect Dis. 2021;72(7):1211-1219.
  8. Wang Y, Tian G-B, Zhang R, et al. Prevalence, risk factors, outcomes, and molecular epidemiology of mcr-1-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis. 2017;17(4):390-399.
  9. Munoz-Price LS, Poirel L, Bonomo RA, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13(9):785-796.
  10. Errico G, Gagliotti C, Monaco M, et al. Colonization and infection due to carbapenemase-producing Enterobacteriaceae in liver and lung transplant recipients and donor-derived transmission: a prospective cohort study conducted in Italy. Clin Microbiol Infec. 2019;25(2):203-209.
  11. Fishman JA, Grossi PA. Donor-derived infection-the challenge for transplant safety. Nat Rev Nephrol. 2014;10(11):663-672.
  12. Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58(9):1274-1283.
  13. Lewis JD, Sifri CD. Multidrug-resistant bacterial donor-derived infections in solid organ transplantation. Curr Infect Dis Rep. 2016;18(6):18.
  14. Tumbarello M, Viale P, Viscoli C, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55(7):943-950.
  15. Doucette KE, Al-Saif M, Kneteman N, et al. Donor-derived bacteremia in liver transplant recipients despite antibiotic prophylaxis. Am J Transplant. 2013;13(4):1080-1083.
  16. Tong LI, Hu X-G, Huang FA, et al. Clinical impacts and outcomes with possible donor-derived infection in infected donor liver transplantation: a single-center retrospective study in China. J Infect Dis. 2020;221(Suppl 2):S164-S173.
  17. Fishman JA. Infection in solid-organ transplant recipients. N Engl J Med. 2007;357(25):2601-2614.
  18. Anesi JA, Han JH, Lautenbach E, et al. Impact of deceased donor multidrug-resistant bacterial organisms on organ utilization. Am J Transplant. 2020;20(9):2559-2566.
  19. Mularoni A, Bertani A, Vizzini G, et al. Outcome of transplantation using organs from donors infected or colonized with carbapenem-resistant gram-negative bacteria. Am J Transplant. 2015;15(10):2674-2682.
  20. Wolfe CR, Ison MG. Donor-derived infections: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33(9SI): 10.1111/ctr.13547
  21. Len O, Garzoni C, Lumbreras C, et al. Recommendations for screening of donor and recipient prior to solid organ transplantation and to minimize transmission of donor-derived infections. Clin Microbiol Infec. 2014;20:10-18.
  22. Nakajima D, Cypel M, Bonato R, et al. Ex vivo perfusion treatment of infection in human donor lungs. Am J Transplant. 2016;16(4):1229-1237.
  23. Andreasson A, Karamanou DM, Perry JD, et al. The effect of ex vivo lung perfusion on microbial load in human donor lungs. J Heart Lung Transplant. 2014;33(9):910-916.
  24. Helfritz FA, Bojkova D, Wanders V, et al. Methylene blue treatment of grafts during cold ischemia time reduces the risk of hepatitis C virus transmission. J Infect Dis. 2018;218(11):1711-1721.
  25. Lübbert C, Faucheux S, Becker-Rux D, et al. Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive decontamination in patients with KPC-2-producing Klebsiella pneumoniae: a single-centre experience. Int J Antimicrob Agents. 2013;42(6):565-570.
  26. Anesi JA, Blumberg EA, Han JH, et al. Risk factors for multidrug-resistant organisms among deceased organ donors. Am J Transplant. 2019;19(9):2468-2478.
  27. Fishman JA, Issa NC. Infection in organ transplantation: risk factors and evolving patterns of infection. Infect Dis Clin North Am. 2010;24(2):273-283.
  28. Goldaracena N, Spetzler VN, Echeverri J, et al. Inducing hepatitis C virus resistance after pig liver transplantation-a proof of concept of liver graft modification using warm ex vivo perfusion. Am J Transplant. 2017;17(4):970-978.
  29. Galasso M, Feld JJ, Watanabe Y, et al. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nat Commun. 2019;10(1):481.
  30. Steinhoff G, You X-M, Steinmuller C, et al. Enhancement of cytomegalovirus infection and acute rejection after allogeneic lung transplantation in the rat. Transplantation. 1996;61(8):1250-1260.
  31. Schlegel A, Kron P, Graf R, Clavien PA, Dutkowski P. Hypothermic Oxygenated Perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation. Ann Surg. 2014;260(5):931-938.
  32. Fuller TF, Hoff U, Rose F, et al. Effect of mycophenolate mofetil on rat kidney grafts with prolonged cold preservation. Kidney Int. 2006;70(3):570-577.
  33. Shrum B, Anantha RV, Xu SX, et al. A robust scoring system to evaluate sepsis severity in an animal model. BMC Res Notes. 2014;7:233.
  34. Deppermann C, Peiseler M, Zindel J, et al. Tacrolimus impairs Kupffer cell capacity to control bacteremia: why transplant recipients are susceptible to infection. Hepatology. 2021;73(5):1967-1984.
  35. Olson PD, McLellan LK, Hreha TN, et al. Androgen exposure potentiates formation of intratubular communities and renal abscesses by Escherichia coli. Kidney Int. 2018;94(3):502-513.
  36. Kaul DR, Vece G, Blumberg E, et al. Ten years of donor-derived disease: a report of the disease transmission advisory committee. Am J Transplant. 2021;21(2):689-702.
  37. Procaccio F, Masiero L, Vespasiano F, et al. Organ donor screening for carbapenem-resistant gram-negative bacteria in Italian intensive care units: the DRIn study. Am J Transplant. 2020;20(1):262-273.
  38. Smith SN, Hagan EC, Lane MC, Mobley HL. Dissemination and systemic colonization of uropathogenic Escherichia coli in a murine model of bacteremia. MBio. 2010;1(5): 10.1128/mBio.00262-10
  39. Channabasappa S, Durgaiah M, Chikkamadaiah R, et al. Efficacy of novel antistaphylococcal ectolysin P128 in a rat model of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2018;62(2). 10.1128/AAC.01358-17
  40. Saenkham P, Jennings-Gee J, Hanson B, et al. Hyperglucosuria induced by dapagliflozin augments bacterial colonization in the murine urinary tract. Diabetes Obes Metab. 2020;22(9):1548-1555.
  41. Mark LF, Solomon A, Northington FJ, Lee CK. Gentamicin pharmacokinetics in neonates undergoing therapeutic hypothermia. Ther Drug Monit. 2013;35(2):217-222.
  42. van den Broek MP, Groenendaal F, Egberts AC, Rademaker CM. Effects of hypothermia on pharmacokinetics and pharmacodynamics: a systematic review of preclinical and clinical studies. Clin Pharmacokinet. 2010;49(5):277-294.
  43. Karampatakis V, Papanikolaou T, Giannousis M, et al. Stability and antibacterial potency of ceftazidime and vancomycin eyedrops reconstituted in BSS against Pseudomonas aeruginosa and Staphylococcus aureus. Acta Ophthalmol. 2009;87(5):555-558.
  44. Mirabet V, Melero A, Ocete MD, et al. Effect of freezing and storage temperature on stability and antimicrobial activity of an antibiotic mixture used for decontamination of tissue allografts. Cell Tissue Bank. 2018;19(4):489-497.
  45. Chatauret N, Coudroy R, Delpech PO, et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion's protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am J Transplant. 2014;14(11):2500-2514.
  46. Maathuis M-H, Manekeller S, van der Plaats A, et al. Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann Surg. 2007;246(6):982-991.
  47. Lee CY, Zhang JX, Jones JJ, Southard JH, Clemens MG. Functional recovery of preserved livers following warm ischemia: improvement by machine perfusion preservation. Transplantation. 2002;74(7):944-951.
  48. Guan X, He L, Hu B, et al. Laboratory diagnosis, clinical management and infection control of the infections caused by extensively drug-resistant Gram-negative bacilli: a Chinese consensus statement. Clin Microbiol Infec. 2016;221:S15-S25.
  49. Ezadi F, Ardebili A, Mirnejad R. Antimicrobial susceptibility testing for polymyxins: challenges, issues, and recommendations. J Clin Microbiol. 2019;57(4). 10.1128/JCM.01390-18
  50. van Duin D, van Delden C. Multidrug-Resistant Gram-Negative Bacteria Infections in solid organ transplantation. Am J Transplant. 2013;13(s4):31-41.
  51. Usacheva EA, Grayes A, Schora D, Peterson LR. Investigation of tigecycline bactericidal activity: optimisation of laboratory testing. J Glob Antimicrob Resist. 2014;2(4):269-275.
  52. Tessier PR, Nicolau DP. Tigecycline displays in vivo bactericidal activity against extended-spectrum-β-lactamase-producing enterobacteriaceae after 72-hour exposure period. Antimicrob Agents Chemother. 2013;57(1):640-642. https://doi.org/10.1128/aac.01824-12
  53. Cunha BA, Baron J, Cunha CB. Once daily high dose tigecycline - pharmacokinetic/pharmacodynamic based dosing for optimal clinical effectiveness: dosing matters, revisited. Expert Rev Anti-Infe. 2017;15(3):257-267.
  54. De Pascale G, Montini L, Pennisi M, et al. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit Care. 2014;18(3):R90.
  55. Baron J, Cai S, Klein N, Cunha BA. Once daily high dose tigecycline is optimal: tigecycline PK/PD parameters predict clinical effectiveness. J Clin Med. 2018;7(3):49.
  56. Van der Weide H, Ten Kate MT, Vermeulen-de Jongh DMC, et al. Successful high-dosage monotherapy of tigecycline in a multidrug-resistant Klebsiella pneumoniae pneumonia-septicemia model in rats. Antibiotics (Basel). 2020;9(3):109.
  57. Cunha BA, Baron J, Cunha CB. Monotherapy with high-dose once-daily tigecycline is highly effective against Acinetobacter baumanii and other multidrug-resistant (MDR) gram-negative bacilli (GNB). Int J Antimicrob Ag. 2018;52(1):119-120.
  58. Tsala M, Vourli S, Georgiou P, et al. Triple combination of meropenem, colistin and tigecycline was bactericidal in a dynamic model despite mere additive interactions in chequerboard assays against carbapenennase-producing Klebsiella pneumoniae isolates. J Antimicrob Chemother. 2019;74(2):387-394.
  59. Trecarichi EM, Tumbarello M. Therapeutic options for carbapenem-resistant Enterobacteriaceae infections. Virulence. 2017;8(4):470-484.
  60. Rafailidis PI, Falagas ME. Options for treating carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2014;27(6):479-483.
  61. Hosgood SA, Nicholson ML. The first clinical case of intermediate ex vivo normothermic perfusion in renal transplantation. Am J Transplant. 2014;14(7):1690-1692.
  62. Hosgood SA, Saeb-Parsy K, Hamed MO, Nicholson ML. Successful transplantation of human kidneys deemed untransplantable but resuscitated by ex vivo normothermic machine perfusion. Am J Transplant. 2016;16(11):3282-3285.
  63. Xu J, Buchwald JE, Martins PN. Review of current machine perfusion therapeutics for organ preservation. Transplantation. 2020;104(9):1792-1803. https://doi.org/10.1097/tp.0000000000003295

MeSH Term

Animals
Anti-Bacterial Agents
Escherichia coli
Humans
Hypothermia
Organ Preservation
Perfusion
Rats
Tissue Donors

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0kidneysHMP+ABinfectioninfectionsbacteriacoliperfusioncombinedCRKP-infectedSCS+ABgroupsorganutilizationmultidrug-resistantCRKPmachineHMPNMPABENMP+ABsignificantbacterialloadvsp = ratsgroupinfecteddonorsdonor-derivedinfectiouskidneyDonoraffectsespeciallymaydisastrousoutcomesestablishedratmodelinoculatedEscherichiacarbapenem-resistantKlebsiellapneumoniaeinvestigatewhetherhypothermicnormothermicstaticcoldstorageSCSantibioticeliminatetreatedcefoperazone-sulbactamtigecyclinerespectivelytreatmentstherapeuticeffectscomparedtreatment22 050 ± 2884 CFU/g1900 ± 400 CFU/g00725 433 ± 2059 CFU/g500 ± 458 CFU/g002significantlyreducedstatisticallydifferenceSubsequentlytransplantedsevereeuthanizedday4post-transplantcontrastgoodconditionconclusionseemsefficientapproachesdecreasemightleadhigherratesactiveMachineantibioticspreventscausedanimalmodels:murineantibiotic:antibacterialartificialorgans/supportdevicesbasiclaboratoryresearch/sciencediseasedonation:disease:transplantation/nephrologysolidtransplantation

Similar Articles

Cited By