Advantages of the Rayleigh-Lowe-Andersen thermostat in soft sphere molecular dynamics simulations.

Martijn G Verbeek, Dietha Smid, Jasper Valentijn, Joop Valentijn
Author Information
  1. Martijn G Verbeek: , Hoorn, The Netherlands. ORCID
  2. Dietha Smid: , Hoorn, The Netherlands.
  3. Jasper Valentijn: , Hoorn, The Netherlands.
  4. Joop Valentijn: , Hoorn, The Netherlands.

Abstract

The Rayleigh-Lowe-Andersen thermostat is a momentum-conserving, Galilean-invariant analogue of the Andersen thermostat, like the original (Maxwellian) Lowe-Andersen thermostat. However, the Rayleigh-Lowe-Andersen thermostat remains local even if the fluid density becomes low. By using a minimized thermostat interaction radius we show with a molecular dynamics simulation that the Rayleigh-Lowe-Andersen thermostat affects the natural dynamics of a low-density Lennard-Jones fluid in a minimal fashion. We also show that it is no longer necessary to consider a separate simulation just to determine the optimal value of the thermostat interaction radius. Instead, this value is computed directly during the main simulation run. Because the Rayleigh-Lowe-Andersen thermostat can be combined with the velocity Verlet integration scheme, we expect a widespread applicability of the thermal mechanism presented here.

References

  1. S. Roy, S.K. Das, Study of critical dynamics in fluids via molecular dynamics in canonical ensemble. Eur. Phys. J. E 38, 132 (2015) [DOI: 10.1140/epje/i2015-15132-2]
  2. J. Ruiz-Franco, L. Rovigatti, E. Zaccarelli, On the effect of the thermostat in non-equilibrium molecular dynamics simulations. Eur. Phys. J. E 41, 80 (2018) [DOI: 10.1140/epje/i2018-11689-4]
  3. S. Nosé, A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255 (1984) [DOI: 10.1080/00268978400101201]
  4. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31, 1695 (1985) [DOI: 10.1103/PhysRevA.31.1695]
  5. T. Soddemann, B. Dunweg, K. Kremer, Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68, 046702 (2003) [DOI: 10.1103/PhysRevE.68.046702]
  6. S.D. Stoyanov, R.D. Groot, From Molecular Dynamics to hydrodynamics-a novel Galilean invariant thermostat. J. Chem. Phys. 122, 114112 (2005) [DOI: 10.1063/1.1870892]
  7. H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384 (1980) [DOI: 10.1063/1.439486]
  8. E.A. Koopman, C.P. Lowe, Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J. Chem. Phys. 124, 204103 (2006) [DOI: 10.1063/1.2198824]
  9. P.J. Hoogerbrugge, J.V.A.M. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155 (1993) [DOI: 10.1209/0295-5075/19/3/001]
  10. P. Español, P.B. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191 (1995) [DOI: 10.1209/0295-5075/30/4/001]
  11. C.P. Lowe, An alternative approach to dissipative particle dynamics. Europhys. Lett. 47, 145 (1999)
  12. M.G. Verbeek, A modified Lowe-Andersen thermostat for a hard sphere fluid. Eur. Phys. J. E 42, 60 (2019) [DOI: 10.1140/epje/i2019-11828-5]
  13. M.G. Verbeek, A modified Lowe-Andersen thermostat for a Lennard-Jones fluid. Microfluid Nanofluid 25, 8 (2021)
  14. D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, 2nd edn. (Academic Press, 2002)
  15. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992)
  16. D.A. Mc Quarrie, Statistical Mechanics (Harper & Row, 1976)

MeSH Term

Molecular Dynamics Simulation
Motion

Word Cloud

Created with Highcharts 10.0.0thermostatRayleigh-Lowe-Andersendynamicssimulationfluidinteractionradiusshowmolecularvaluemomentum-conservingGalilean-invariantanalogueAndersenlikeoriginalMaxwellianLowe-AndersenHoweverremainslocalevendensitybecomeslowusingminimizedaffectsnaturallow-densityLennard-JonesminimalfashionalsolongernecessaryconsiderseparatejustdetermineoptimalInsteadcomputeddirectlymainruncancombinedvelocityVerletintegrationschemeexpectwidespreadapplicabilitythermalmechanismpresentedhereAdvantagessoftspheresimulations

Similar Articles

Cited By