The Rayleigh-Lowe-Andersen thermostat is a momentum-conserving, Galilean-invariant analogue of the Andersen thermostat, like the original (Maxwellian) Lowe-Andersen thermostat. However, the Rayleigh-Lowe-Andersen thermostat remains local even if the fluid density becomes low. By using a minimized thermostat interaction radius we show with a molecular dynamics simulation that the Rayleigh-Lowe-Andersen thermostat affects the natural dynamics of a low-density Lennard-Jones fluid in a minimal fashion. We also show that it is no longer necessary to consider a separate simulation just to determine the optimal value of the thermostat interaction radius. Instead, this value is computed directly during the main simulation run. Because the Rayleigh-Lowe-Andersen thermostat can be combined with the velocity Verlet integration scheme, we expect a widespread applicability of the thermal mechanism presented here.
References
S. Roy, S.K. Das, Study of critical dynamics in fluids via molecular dynamics in canonical ensemble. Eur. Phys. J. E 38, 132 (2015)
[DOI: 10.1140/epje/i2015-15132-2]
J. Ruiz-Franco, L. Rovigatti, E. Zaccarelli, On the effect of the thermostat in non-equilibrium molecular dynamics simulations. Eur. Phys. J. E 41, 80 (2018)
[DOI: 10.1140/epje/i2018-11689-4]
S. Nosé, A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255 (1984)
[DOI: 10.1080/00268978400101201]
T. Soddemann, B. Dunweg, K. Kremer, Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68, 046702 (2003)
[DOI: 10.1103/PhysRevE.68.046702]
S.D. Stoyanov, R.D. Groot, From Molecular Dynamics to hydrodynamics-a novel Galilean invariant thermostat. J. Chem. Phys. 122, 114112 (2005)
[DOI: 10.1063/1.1870892]
H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384 (1980)
[DOI: 10.1063/1.439486]
E.A. Koopman, C.P. Lowe, Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J. Chem. Phys. 124, 204103 (2006)
[DOI: 10.1063/1.2198824]
P.J. Hoogerbrugge, J.V.A.M. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155 (1993)
[DOI: 10.1209/0295-5075/19/3/001]
P. Español, P.B. Warren, Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30, 191 (1995)
[DOI: 10.1209/0295-5075/30/4/001]
C.P. Lowe, An alternative approach to dissipative particle dynamics. Europhys. Lett. 47, 145 (1999)
M.G. Verbeek, A modified Lowe-Andersen thermostat for a hard sphere fluid. Eur. Phys. J. E 42, 60 (2019)
[DOI: 10.1140/epje/i2019-11828-5]
M.G. Verbeek, A modified Lowe-Andersen thermostat for a Lennard-Jones fluid. Microfluid Nanofluid 25, 8 (2021)
D. Frenkel, B. Smit, Understanding Molecular Simulations: From Algorithms to Applications, 2nd edn. (Academic Press, 2002)
J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992)
D.A. Mc Quarrie, Statistical Mechanics (Harper & Row, 1976)