COVIR: A virtual rendering of a novel NN architecture O-Net for COVID-19 Ct-scan automatic lung lesions segmentation.

Kahina Amara, Ali Aouf, Hoceine Kennouche, A Oualid Djekoune, Nadia Zenati, Oussama Kerdjidj, Farid Ferguene
Author Information
  1. Kahina Amara: CDTA Centre for Development of Advanced Technologies, City 20 August 1956 Baba Hassen, Algiers, Algeria.
  2. Ali Aouf: USTHB University of science and technology Houari Boumediene, B.P 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria.
  3. Hoceine Kennouche: USTHB University of science and technology Houari Boumediene, B.P 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria.
  4. A Oualid Djekoune: CDTA Centre for Development of Advanced Technologies, City 20 August 1956 Baba Hassen, Algiers, Algeria.
  5. Nadia Zenati: CDTA Centre for Development of Advanced Technologies, City 20 August 1956 Baba Hassen, Algiers, Algeria.
  6. Oussama Kerdjidj: CDTA Centre for Development of Advanced Technologies, City 20 August 1956 Baba Hassen, Algiers, Algeria.
  7. Farid Ferguene: USTHB University of science and technology Houari Boumediene, B.P 32 El Alia 16111 Bab Ezzouar, Algiers, Algeria.

Abstract

With the Coronavirus disease 2019 (COVID-19) spread, causing a world pandemic, and recently, the virus new variants continue to appear, making the situation more challenging and threatening, the visual assessment and quantification by expert radiologists have become costly and error-prone. Hence, there is a need to propose a model to predict the COVID-19 cases at the earliest possible to control the disease spread. In order to assist the medical professionals and reduce workload and the time the COVID-19 diagnosis cycle takes, this paper proposes a novel neural network architecture termed as O-Net to automatically segment chest Computerised Tomography Ct-scans infected by COVID-19 with optimised computing power and memory occupation. The O-Net consists of two convolutional autoencoders with an upsampling channel and a downsampling channel. Experimental tests show our proposal's effectiveness and potential, with a dice score of 0.86, pixel accuracy, precision, specificity of 0.99, 0.99, 0.98, respectively. Performance on the external dataset illustrates generalisation and scalability capabilities of the O-Net model to Ct-scan obtained from different scanners with different sizes. The second objective of this work is to introduce our virtual reality platform, COVIR, that visualises and manipulates 3D reconstructed lungs and segmented infected lesions caused by COVID-19. COVIR platform acts as a reading and visualisation support for medical practitioners to diagnose COVID-19 lung infection. The COVIR platform could be used for medical education professional practice and training. It was tested by Thirteen participants (medical staff, researchers, and collaborators), they conclude that the 3D VR visualisation of segmented Ct-Scan provides an aid diagnosis tool for better interpretation.

Keywords

References

  1. Mach Vis Appl. 2021;32(1):14 [PMID: 33169050]
  2. Front Neurol. 2020 Sep 15;11:926 [PMID: 33041963]
  3. Radiology. 2020 Aug;296(2):E65-E71 [PMID: 32191588]
  4. Sci Rep. 2020 Nov 5;10(1):19196 [PMID: 33154542]
  5. Radiology. 2021 Apr;299(1):E204-E213 [PMID: 33399506]
  6. Diabetes Metab Syndr. 2020 Jul - Aug;14(4):661-664 [PMID: 32438329]
  7. IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495 [PMID: 28060704]
  8. IEEE Trans Vis Comput Graph. 2022 Jan;28(1):227-237 [PMID: 34587075]
  9. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780 [PMID: 33705321]
  10. BMC Med Imaging. 2021 Feb 9;21(1):19 [PMID: 33557772]
  11. Expert Syst Appl. 2021 Apr 1;167:114142 [PMID: 34924697]
  12. Dev Growth Differ. 2013 May;55(4):523-49 [PMID: 23560739]
  13. IEEE Trans Med Imaging. 2020 Aug;39(8):2626-2637 [PMID: 32730213]
  14. Biomed Signal Process Control. 2022 Mar;73:103371 [PMID: 34840591]
  15. J Imaging. 2021 Aug 04;7(8): [PMID: 34460767]
  16. BMC Med Educ. 2020 Sep 25;20(1):332 [PMID: 32977781]
  17. Comput Methods Programs Biomed. 2021 Nov;211:106406 [PMID: 34536634]
  18. Neural Comput Appl. 2021;33(19):12591-12604 [PMID: 33879976]

Word Cloud

Created with Highcharts 10.0.0COVID-19O-Netmedical0architectureplatformCOVIR3Ddiseasespreadmodeldiagnosisnovelinfectedchannel99Ct-scandifferentvirtualrealitysegmentedlesionsvisualisationlungsegmentationCoronavirus2019causingworldpandemicrecentlyvirusnewvariantscontinueappearmakingsituationchallengingthreateningvisualassessmentquantificationexpertradiologistsbecomecostlyerror-proneHenceneedproposepredictcasesearliestpossiblecontrolorderassistprofessionalsreduceworkloadtimecycletakespaperproposesneuralnetworktermedautomaticallysegmentchestComputerisedTomographyCt-scansoptimisedcomputingpowermemoryoccupationconsiststwoconvolutionalautoencodersupsamplingdownsamplingExperimentaltestsshowproposal'seffectivenesspotentialdicescore86pixelaccuracyprecisionspecificity98respectivelyPerformanceexternaldatasetillustratesgeneralisationscalabilitycapabilitiesobtainedscannerssizessecondobjectiveworkintroducevisualisesmanipulatesreconstructedlungscausedactsreadingsupportpractitionersdiagnoseinfectionusededucationprofessionalpracticetrainingtestedThirteenparticipantsstaffresearcherscollaboratorsconcludeVRCt-ScanprovidesaidtoolbetterinterpretationCOVIR:renderingNNautomaticreconstructionAutomaticDeeplearningVirtual

Similar Articles

Cited By