Species Persistence with Hybridization in Toad-Headed Lizards Driven by Divergent Selection and Low Recombination.

Wei Gao, Chuan-Xin Yu, Wei-Wei Zhou, Bao-Lin Zhang, E Anne Chambers, Hollis A Dahn, Jie-Qiong Jin, Robert W Murphy, Ya-Ping Zhang, Jing Che
Author Information
  1. Wei Gao: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
  2. Chuan-Xin Yu: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
  3. Wei-Wei Zhou: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
  4. Bao-Lin Zhang: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
  5. E Anne Chambers: Department of Integrative Biology and Biodiversity Center, University of Texas at Austin, Austin, TX, USA.
  6. Hollis A Dahn: Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
  7. Jie-Qiong Jin: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
  8. Robert W Murphy: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
  9. Ya-Ping Zhang: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
  10. Jing Che: State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.

Abstract

Speciation plays a central role in evolutionary studies, and particularly how reproductive isolation (RI) evolves. The origins and persistence of RI are distinct processes that require separate evaluations. Treating them separately clarifies the drivers of speciation and then it is possible to link the processes to understand large-scale patterns of diversity. Recent genomic studies have focused predominantly on how species or RI originate. However, we know little about how species persist in face of gene flow. Here, we evaluate a contact zone of two closely related toad-headed lizards (Phrynocephalus) using a chromosome-level genome assembly and population genomics. To some extent, recent asymmetric introgression from Phrynocephalus putjatai to P. vlangalii reduces their genomic differences. However, their highly divergent regions (HDRs) have heterogeneous distributions across the genomes. Functional gene annotation indicates that many genes within HDRs are involved in reproduction and RI. Compared with allopatric populations, contact areas exhibit recent divergent selection on the HDRs and a lower population recombination rate. Taken together, this implies that divergent selection and low genetic recombination help maintain RI. This study provides insights into the genomic mechanisms that drive RI and two species persistence in the face of gene flow during the late stage of speciation.

Keywords

References

  1. Evolution. 2008 Feb;62(2):316-36 [PMID: 17999721]
  2. World J Gastroenterol. 2019 Dec 21;25(47):6813-6822 [PMID: 31885422]
  3. Genetics. 2012 Nov;192(3):1065-93 [PMID: 22960212]
  4. Br Foreign Med Chir Rev. 1860 Apr;25(50):367-404 [PMID: 30164232]
  5. Nature. 2015 Feb 19;518(7539):371-5 [PMID: 25686609]
  6. Oncogenesis. 2012 Dec 10;1:e36 [PMID: 23552487]
  7. Heredity (Edinb). 2017 May;118(5):503-510 [PMID: 28198814]
  8. Nat Ecol Evol. 2019 Apr;3(4):570-576 [PMID: 30911146]
  9. Biol Reprod. 2009 Nov;81(5):921-32 [PMID: 19571264]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. Nat Commun. 2016 Oct 31;7:13195 [PMID: 27796282]
  12. J Assist Reprod Genet. 2014 May;31(5):601-11 [PMID: 24647635]
  13. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W435-9 [PMID: 16845043]
  14. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10 [PMID: 19274634]
  15. Nat Rev Genet. 2017 Feb;18(2):87-100 [PMID: 27840429]
  16. J Hered. 2014;105 Suppl 1:795-809 [PMID: 25149255]
  17. BMC Evol Biol. 2010 Jun 25;10:197 [PMID: 20579368]
  18. Tohoku J Exp Med. 2011;224(2):111-7 [PMID: 21597245]
  19. Mol Endocrinol. 2012 Apr;26(4):630-42 [PMID: 22383461]
  20. J Cell Sci. 2013 Jul 15;126(Pt 14):3204-13 [PMID: 23641067]
  21. Evolution. 2014 Aug;68(8):2430-40 [PMID: 24758256]
  22. PLoS Genet. 2011 May;7(5):e1002088 [PMID: 21637789]
  23. Am J Hum Genet. 2007 Nov;81(5):1084-97 [PMID: 17924348]
  24. PLoS Biol. 2010 Mar 23;8(3):e1000341 [PMID: 20351771]
  25. Syst Biol. 2018 Sep 1;67(5):901-904 [PMID: 29718447]
  26. Nat Genet. 2015 Mar;47(3):217-25 [PMID: 25621459]
  27. Mol Ecol. 2014 Jul;23(13):3133-57 [PMID: 24845075]
  28. Mol Hum Reprod. 2002 Jan;8(1):24-31 [PMID: 11756566]
  29. Gigascience. 2012 Dec 27;1(1):18 [PMID: 23587118]
  30. Genome Res. 2013 Nov;23(11):1817-28 [PMID: 24045163]
  31. Mol Ecol. 2009 Feb;18(3):375-402 [PMID: 19143936]
  32. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  33. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  34. Nat Genet. 2011 Sep 18;43(10):1031-4 [PMID: 21926973]
  35. Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5056-E5065 [PMID: 29760079]
  36. Nat Genet. 2001 Apr;27(4):422-6 [PMID: 11279525]
  37. Mol Phylogenet Evol. 2013 Aug;68(2):259-68 [PMID: 23567019]
  38. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  39. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  40. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  41. Nat Rev Genet. 2014 Mar;15(3):176-92 [PMID: 24535286]
  42. Genome Res. 2015 Nov;25(11):1656-65 [PMID: 26355005]
  43. BMC Evol Biol. 2010 Oct 11;10:302 [PMID: 20937096]
  44. PLoS Biol. 2019 Feb 7;17(2):e2006288 [PMID: 30730876]
  45. Nucleic Acids Res. 2000 Jan 1;28(1):225-7 [PMID: 10592232]
  46. Nature. 2007 Oct 18;449(7164):913-8 [PMID: 17943131]
  47. Mol Ecol. 2008 Apr;17(8):1971-82 [PMID: 18363665]
  48. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  49. Aquat Toxicol. 2014 Jan;146:115-26 [PMID: 24292025]
  50. Mol Biol Evol. 2014 Oct;31(10):2824-7 [PMID: 25015648]
  51. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  52. Nucleic Acids Res. 2013 Jan;41(Database issue):D344-7 [PMID: 23161676]
  53. Mol Phylogenet Evol. 2007 Nov;45(2):643-62 [PMID: 17689269]
  54. Mol Ecol Resour. 2014 May;14(3):652-63 [PMID: 24373504]
  55. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  56. Evolution. 2001 Oct;55(10):2070-87 [PMID: 11761066]
  57. Genome Res. 2008 Jan;18(1):188-96 [PMID: 18025269]
  58. Mol Phylogenet Evol. 2014 Feb;71:288-97 [PMID: 24269317]
  59. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  60. Dev Dyn. 2007 Oct;236(10):2836-43 [PMID: 17823958]
  61. Evolution. 2014 Apr;68(4):923-34 [PMID: 24329123]
  62. Am J Hum Genet. 2011 Jan 7;88(1):76-82 [PMID: 21167468]
  63. Mol Biol Evol. 2016 Jul;33(7):1754-67 [PMID: 26983554]
  64. Nat Genet. 2011 May;43(5):491-8 [PMID: 21478889]
  65. Curr Opin Urol. 2011 Nov;21(6):519-26 [PMID: 21941185]
  66. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D284-8 [PMID: 15608197]
  67. Nucleic Acids Res. 2000 Jan 1;28(1):45-8 [PMID: 10592178]
  68. R Soc Open Sci. 2015 Dec 09;2(12):150285 [PMID: 27019720]
  69. Fungal Genet Biol. 2013 Jan;50:33-43 [PMID: 23165348]
  70. Genome Res. 2017 Jun;27(6):1004-1015 [PMID: 28442558]
  71. Gigascience. 2018 Jan 1;7(1):1-6 [PMID: 29220494]
  72. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  73. Nucleic Acids Res. 2000 Jan 1;28(1):231-4 [PMID: 10592234]
  74. Nucleic Acids Res. 2008 Jan;36(Database issue):D245-9 [PMID: 18003654]
  75. Evolution. 1981 Jan;35(1):124-138 [PMID: 28563447]
  76. Mol Biol Evol. 2015 Jan;32(1):244-57 [PMID: 25246699]
  77. G3 (Bethesda). 2016 Jun 01;6(6):1563-71 [PMID: 27172192]
  78. Heredity (Edinb). 2009 Dec;103(6):439-44 [PMID: 19920849]
  79. Science. 2000 Jan 14;287(5451):306-8 [PMID: 10634785]
  80. Bioinformatics. 2005 May 1;21(9):1859-75 [PMID: 15728110]
  81. Spermatogenesis. 2011 Apr-Jun;1(2):147-151 [PMID: 22319663]
  82. Nucleic Acids Res. 2000 Jan 1;28(1):263-6 [PMID: 10592242]
  83. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  84. J Evol Biol. 2017 Aug;30(8):1512-1515 [PMID: 28786196]
  85. BMC Dev Biol. 2011 Sep 29;11:58 [PMID: 21958027]
  86. Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190533 [PMID: 32654642]
  87. J Evol Biol. 2009 Nov;22(11):2332-41 [PMID: 19732264]
  88. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  89. Science. 2010 Oct 22;330(6003):512-4 [PMID: 20966253]
  90. Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3646-3655 [PMID: 30808754]
  91. Mol Biol Evol. 2021 Oct 27;38(11):4683-4699 [PMID: 34311468]
  92. Genetics. 2017 May;206(1):429-438 [PMID: 28341652]
  93. Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):332-42 [PMID: 22201163]
  94. Bioinformatics. 2001 Sep;17(9):847-8 [PMID: 11590104]
  95. Science. 2014 Jun 20;344(6190):1410-4 [PMID: 24948738]
  96. Am J Hum Genet. 2007 Sep;81(3):559-75 [PMID: 17701901]
  97. J Reprod Dev. 2012;58(3):330-7 [PMID: 22362218]
  98. Nucleic Acids Res. 1999 Jan 1;27(1):263-7 [PMID: 9847197]
  99. J Evol Biol. 2013 Feb;26(2):259-60 [PMID: 23324001]
  100. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  101. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  102. Evolution. 1983 May;37(3):454-471 [PMID: 28563316]
  103. Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
  104. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  105. Nature. 2020 Dec;588(7836):106-111 [PMID: 33116308]
  106. Genes Cells. 2008 Oct;13(10):1001-13 [PMID: 18754795]
  107. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W20-5 [PMID: 15215342]
  108. Bioinformatics. 2010 Aug 15;26(16):2064-5 [PMID: 20591904]
  109. J Evol Biol. 2017 Aug;30(8):1450-1477 [PMID: 28786193]
  110. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  111. Genet Epidemiol. 2005 May;28(4):289-301 [PMID: 15712363]
  112. Evol Biol. 2012 Jun;39(2):255-261 [PMID: 22707806]
  113. Genome Biol. 2015 Dec 01;16:259 [PMID: 26619908]
  114. Nat Commun. 2013;4:1827 [PMID: 23652015]
  115. Anim Reprod Sci. 2011 Oct;128(1-4):11-21 [PMID: 21944540]
  116. Mol Hum Reprod. 2007 Aug;13(8):537-40 [PMID: 17556378]
  117. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D121-4 [PMID: 15608160]
  118. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  119. Mol Ecol. 2005 Aug;14(9):2621-35 [PMID: 16029465]
  120. Nature. 2011 Jul 13;475(7357):493-6 [PMID: 21753753]
  121. Nature. 2012 Nov 29;491(7426):756-60 [PMID: 23103876]
  122. Mutat Res. 2004 May 18;549(1-2):225-40 [PMID: 15120973]
  123. Bioinformatics. 2013 Nov 15;29(22):2933-5 [PMID: 24008419]
  124. J Evol Biol. 2013 Feb;26(2):229-46 [PMID: 23323997]
  125. Science. 2019 Nov 1;366(6465):594-599 [PMID: 31672890]
  126. Science. 2021 Mar 26;371(6536): [PMID: 33766854]
  127. Trends Ecol Evol. 2016 Mar;31(3):226-236 [PMID: 26831635]
  128. Nucleic Acids Res. 2021 Jul 2;49(W1):W317-W325 [PMID: 34086934]
  129. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]

MeSH Term

Animals
Gene Flow
Genetic Speciation
Genetics, Population
Hybridization, Genetic
Lizards
Recombination, Genetic
Reproductive Isolation

Word Cloud

Created with Highcharts 10.0.0RIspeciesgenedivergentpersistencegenomicflowPhrynocephalusHDRsselectionrecombinationstudiesprocessesspeciationHoweverfacecontacttwopopulationrecentSpeciationplayscentralroleevolutionaryparticularlyreproductiveisolationevolvesoriginsdistinctrequireseparateevaluationsTreatingseparatelyclarifiesdriverspossiblelinkunderstandlarge-scalepatternsdiversityRecentfocusedpredominantlyoriginateknowlittlepersistevaluatezonecloselyrelatedtoad-headedlizardsusingchromosome-levelgenomeassemblygenomicsextentasymmetricintrogressionputjataiPvlangaliireducesdifferenceshighlyregionsheterogeneousdistributionsacrossgenomesFunctionalannotationindicatesmanygeneswithininvolvedreproductionComparedallopatricpopulationsareasexhibitlowerrateTakentogetherimplieslowgenetichelpmaintainstudyprovidesinsightsmechanismsdrivelatestageSpeciesPersistenceHybridizationToad-HeadedLizardsDrivenDivergentSelectionLowRecombination

Similar Articles

Cited By